Advertisement

Circuits, Systems, and Signal Processing

, Volume 38, Issue 4, pp 1717–1735 | Cite as

A Frequency Demodulator Based on Adaptive Sampling Frequency Phase-Locking Scheme for Large Deviation FM Signals

  • Vineet VajpayeeEmail author
  • P. Sumathi
  • Aby K. George
Article
  • 60 Downloads

Abstract

A frequency demodulation scheme based on adaptive sampling frequency phase-locking loop (PLL) is proposed for extracting large deviation message signal from sinusoidal frequency-modulated signals. The proposed scheme has been designed to track the frequency-modulated input signal using a look-up-table and adaptively changing the sampling period. While tracking the carrier signal, the numerically controlled oscillator involved in the PLL structure produces the sampling frequency according to the variation of input frequency. In the PLL, the message signal has been extracted at the output of proportional integral controller. Simulation results prove that the PLL exhibits quick acquisition behavior, wide operating range, negligible steady-state error. Experimental investigation validates the efficacy of the proposed PLL performance in message signal extraction.

Keywords

Frequency demodulation Large deviation FM Look-up-table Phase locked loop Adaptive sampling period 

References

  1. 1.
    T. Addabbo, A. Fort, R. Biondi, S. Cioncolini, M. Mugnaini, S. Rocchi, V. Vignoli, Measurement of angular vibrations in rotating shafts: effects of the measurement setup non idealities. IEEE Trans. Instrum. Meas. 62(3), 532–543 (2013)CrossRefGoogle Scholar
  2. 2.
    R.E. Best, Phase-Locked Loops Design, Simulation, and Applications, 5th edn. (McGraw Hill, New York, 2003)Google Scholar
  3. 3.
    I. Carugati, P. Donato, S. Maestri, D. Carrica, M. Benedetti, Frequency adaptive PLL for polluted single-phase grids. IEEE Trans. Power Electron. 27(5), 2396–2404 (2012)CrossRefGoogle Scholar
  4. 4.
    I. Carugati, S. Maestri, P. Donato, D. Carrica, M. Benedetti, Variable sampling period filter PLL for distorted three-phase systems. IEEE Trans. Power Electron. 27(1), 321–330 (2012)CrossRefGoogle Scholar
  5. 5.
    F. Colodro, A. Torralba, Frequency-to-digital conversion based on sampled phase-locked loop with third-order noise shaping. IET Electron. Lett. 47(19), 1069–1070 (2011)CrossRefGoogle Scholar
  6. 6.
    S. Engelberg, E. Chalom, Measuring the spectral content of a signal: an introduction. IEEE Instrum. Meas. Mag. 13(6), 34–38 (2010)CrossRefGoogle Scholar
  7. 7.
    G. Fedele, A. Ferrise, A frequency-locked-loop filter for biased multi-sinusoidal estimation. IEEE Trans. Signal Process. 62(5), 1125–1134 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    H. Gheidi, A. Banai, An ultra-broadband direct demodulator for microwave FM receivers. IEEE Trans. Microw. Theory Tech. 59(8), 2131–2139 (2011)CrossRefGoogle Scholar
  9. 9.
    W. Godycki, R. Dokania, X. Wang, A. Apsel, A high-speed, on-chip implementation of Teager Kaiser operator for in-band interference rejection, in Proceedings of the IEEE Asian Solid State Circuits conference (A-SSCC), Beijing, China, pp. 1–4 (2010)Google Scholar
  10. 10.
    S. Kadam, D. Sasidaran, A. Awawdeh, L. Johnson, M. Soderstrand, Comparison of various numerically controlled oscillators, in Proceedings of the 45th Midwest Symposium on Circuits and Systems (MWSCAS), Tulsa, USA, vol. 3, pp. 200–202 (2002)Google Scholar
  11. 11.
    M. Kunita, M. Sudo, S. Inoue, M. Akahane, A new method for blood velocity measurements using ultrasound FMCW signals. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 57(5), 1064–1076 (2010)CrossRefGoogle Scholar
  12. 12.
    P. Levesque, M. Sawan, Real-time hand-held ultrasound medical-imaging device based on a new digital quadrature demodulation processor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 56(8), 1654–1665 (2009)CrossRefGoogle Scholar
  13. 13.
    R. Lyons, A. Bell, The swiss army knife of digital networks. IEEE Signal Process. Mag. 21(3), 90–100 (2004)CrossRefGoogle Scholar
  14. 14.
    B.P. McGrath, D.G. Holmes, J.J.H. Galloway, Power converter line synchronization using a discrete Fourier transform (DFT) based on variable sampling rate. IEEE Trans. Power Electron. 20(4), 877–884 (2005)CrossRefGoogle Scholar
  15. 15.
    M.A. Perez, J.R. Espinoza, L.A. Moran, M.A. Torres, E.A. Araya, A robust phase-locked loop algorithm to synchronize static power converters with polluted AC systems. IEEE Trans. Ind. Electron. 55(5), 2185–2192 (2008)CrossRefGoogle Scholar
  16. 16.
    R. Punchalard, J. Koseeyaporn, P. Wardkein, Novel digital FM demodulation, in Proceedings of the IEEE Region 10 Conference (TENCON), Singapore, pp. 1–4 (2009)Google Scholar
  17. 17.
    F. Ramirez, V. Arana, A. Suarez, Frequency demodulator using an injection-locked oscillator: analysis and design. IEEE Trans. Microw. Wirel. Compon. Lett. 18(1), 43–45 (2008)CrossRefGoogle Scholar
  18. 18.
    F. Schadt, F. Mohr, M. Holzer, FM demodulation of IQ baseband signals using Kalman filters, in Proceedings of the 18th IEEE International Conference Radioelektronika, Prague, Czech Republic, pp. 1–4 (2008)Google Scholar
  19. 19.
    B. Schlecker, M. Ortmanns, J. Anders, G. Fantner, PLL-based high-speed demodulation of FM signals for real-time AFM applications, in Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS), Beijing, China, pp. 197–200 (2013)Google Scholar
  20. 20.
    G. Sell, M. Slaney, Solving demodulation as an optimization problem. IEEE Trans. Audio Speech Lang. Process. 18(8), 2051–2066 (2010)CrossRefGoogle Scholar
  21. 21.
    K. Singh, P. Sumathi, Moving-window DFT based frequency-locked loop for FM demodulation. IEEE Commun. Lett. 20(5), 898–901 (2016)CrossRefGoogle Scholar
  22. 22.
    P. Sumathi, A frequency demodulation technique based on sliding DFT phase locking scheme for large variation FM signals. IEEE Commun. Lett. 16(11), 1864–1867 (2012)CrossRefGoogle Scholar
  23. 23.
    P. Sumathi, P. Janakiraman, Integrated phase locking scheme for SDFT based harmonic analysis of periodic signals. IEEE Trans. Circuits Syst. II Express Briefs 55(1), 51–55 (2008)CrossRefGoogle Scholar
  24. 24.
    P. Sumathi, P. Janakiraman, Phase locking scheme based on look-up-table-assisted sliding discrete Fourier transform for low-frequency power and acoustic signals. IET Circuits Devices Syst. 5(6), 494–504 (2011)CrossRefGoogle Scholar
  25. 25.
    B. Tietche, O. Romain, B. Denby, F. Dieuleveult, FPGA-based simultaneous multichannel FM broadcast receiver for audio indexing applications in consumer electronics scenarios. IEEE Trans. Consum. Electron. 58(4), 1153–1161 (2012)CrossRefGoogle Scholar
  26. 26.
    C. Turner, Recursive discrete-time sinusoidal oscillators. IEEE Signal Process. Mag. 20(3), 103–111 (2003)CrossRefGoogle Scholar
  27. 27.
    V. Vajpayee, P. Sumathi, Adaptive sampling frequency based phase locking scheme for single-phase grid converters, in Proceedings of the International Conference on Communication and Signal Processing, Melmaruvathur, India, pp. 293–297 (2013)Google Scholar
  28. 28.
    A. Venkitaraman, C. Seelamantula, A technique to compute smooth amplitude, phase, and frequency modulations from the analytic signal. IEEE Signal Process. Lett. 19(10), 623–626 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringIndian Institute of Technology RoorkeeRoorkeeIndia
  2. 2.Homi Bhabha National InstituteMumbaiIndia
  3. 3.Department of Electrical and Computer EngineeringWayne State UniversityDetroitUSA

Personalised recommendations