Advertisement

A Flux-Controlled Logarithmic Memristor Model and Emulator

  • Xudong Xie
  • Liangji Zou
  • Shiping Wen
  • Zhigang Zeng
  • Tingwen Huang
Article
  • 78 Downloads

Abstract

The HP TiO\(_2\) model, as it is well known, is the most widely used physical model of memristor. However, deriving a mathematical model that fully characterizes the HP TiO\(_2\) memristor is a challenging task. As a result, simplified models such as the nonlinear quadratic model and the cubic memristor model are utilized in theoretic quantitative analysis of memristor circuits. These models result in unsatisfactory performance for many applications. To mitigate this problem, this paper proposes a new nonlinear logarithmic model to characterize memristor. Additionally, a memristor emulator circuit is developed. Finally, the relationships among the HP TiO\(_2\) memristor, the logarithmic model, and the emulator are thoroughly discussed.

Keywords

Flux-controlled memristor Logarithmic model Memristor emulator 

References

  1. 1.
    R.F. Abdelkader, S.M. Abuelenin, Memristor model based on fuzzy window function, in IEEE International Conference on Fuzzy Systems (2015), pp. 1–5Google Scholar
  2. 2.
    S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Regul Pap 11, 3008–3021 (2013)CrossRefGoogle Scholar
  3. 3.
    B.C. Bao, Z. Liu, J.P. Xu, Initial state dependent dynamical behaviors in memristor based chaotic circuit. Chin. Phys. Lett. 7, 51–53 (2010)Google Scholar
  4. 4.
    Z. Biolek, D. Biolek, V. Biolkova, Improved model of TiO\(_{2}\) memristor. Radioengineering 2, 378–383 (2015)CrossRefGoogle Scholar
  5. 5.
    Z. Biolek, D. Biolek, V. Biolkova, SPICE model of memristor with nonlinear dopant drift. Radioengineering 2, 210–214 (2009)Google Scholar
  6. 6.
    Z. Biolek, D. Biolek, V. Biolkova, Z. Kolka, A. Ascoli, R. Tetzlaff, Analysis of memristors with nonlinear memristance versus state maps. Int. J. Circuit Theory Appl. 45, 1814–1832 (2017)CrossRefGoogle Scholar
  7. 7.
    D. Biolek, Z. Kolka, V. Biolkova, Z. Biolek, Memristor models for SPICE simulation of extremely large memristive networks. Proc. IEEE Int. Symp. Circuits Syst. 14, 389–392 (2016)Google Scholar
  8. 8.
    A. Chanthbouala, V. Garcia, R.O. Cherifi, K. Bouzehouane, S. Fusil, X. Moya, A ferroelectric memristor. Nat. Mater. 11, 860–864 (2012)CrossRefGoogle Scholar
  9. 9.
    W. Chen, X. Yang, F.Z. Wang, An omnipotent memristor model with controllable window functions, in International Conference on Modelling and Simulation (2015), pp. 600–605Google Scholar
  10. 10.
    L.O. Chua, Everything you wish to know about memristors but are afraid to ask. Radioengineering 2, 319–368 (2015)CrossRefGoogle Scholar
  11. 11.
    L.O. Chua, Memristor-the missing circuit element. IEEE Trans. Circuits Theory 18, 507–519 (1971)CrossRefGoogle Scholar
  12. 12.
    F. Corinto, A. Ascoli, A boundary condition-based approach to the modeling of memristor nanostructures. IEEE Trans. Circuits Syst. I Regul. Pap. 59, 2713–2726 (2012)MathSciNetCrossRefGoogle Scholar
  13. 13.
    F. Corinto, A. Ascoli, Memristive diode bridge with LCR filter. Electron. Lett. 14, 824–825 (2012)CrossRefGoogle Scholar
  14. 14.
    F. Corinto, P.P. Civalleri, L.O. Chua, A theoretical approach to memristor devices. IEEE J. Emerg. Sel. Top. Circuits Syst. 2, 123–132 (2015)CrossRefGoogle Scholar
  15. 15.
    F. Corinto, M. Forti, Memristor circuits: flux-charge analysis method. IEEE Trans. Circuits Syst. I Regul. Pap. 11, 1997–2009 (2016)CrossRefGoogle Scholar
  16. 16.
    E. Gale, Uniform and piece-wise uniform fields in memristor models (2014), arXiv: 1404.5581
  17. 17.
    M. Itoh, L. Chua, Memristor oscillators. Int. J. Bifurc. Chaos 11, 3183–3206 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Y.N. Joglekar, S.J. Wolf, The elusive memristor: properties of basic electrical circuits. Eur. J. Phys. 30, 661–675 (2009)CrossRefzbMATHGoogle Scholar
  19. 19.
    H. Kim, M.P. Sah, C. Yang, S. Cho, L.O. Chua, Memristor emulator for memristor circuit application. IEEE Trans. Circuits Syst. I Regul. Pap. 10, 2422–2431 (2012)MathSciNetGoogle Scholar
  20. 20.
    S. Kvatinsky, E.G. Friedman, A. Kolodny, U.C. Weiser, TEAM: threshold adaptive memristor model. IEEE Trans. Circuits Syst. I Regul. Pap. 1, 211–221 (2013)MathSciNetCrossRefGoogle Scholar
  21. 21.
    H. Li, C. Wu, X. Jing, L. Wu, Fuzzy tracking control for nonlinear time-delay systems. IEEE Trans. Cybern. 47, 2020–2031 (2017)CrossRefGoogle Scholar
  22. 22.
    H. Li, C. Wu, L. Wu, H.-K. Lam, Y. Gao, Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Trans. Cybern. 46, 668–678 (2016)CrossRefGoogle Scholar
  23. 23.
    J. Lu, J. Zhong, D.W.C. Ho, Y. Tang, J. Cao, On controllability of delayed boolean control networks. SIAM J. Control Optim. 54, 475–494 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    J. Lu, J. Zhong, C. Huang, J. Cao, On pinning controllability of boolean control networks. IEEE Trans. Autom. Control 61, 1658–1663 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    F. Merrikh Bayat, B. Hoskins, D.B. Strukov, Phenomenological modeling of memristive devices. Appl. Phys. A Mater. Sci. Process. 3, 779–786 (2015)CrossRefGoogle Scholar
  26. 26.
    B. Muthuswamy, Implementing memristor based chaotic circuits. Int. J. Bifurc. Chaos 5, 1335–1350 (2010)CrossRefzbMATHGoogle Scholar
  27. 27.
    R. Naous, M. Al-Shedivat, K.N. Salama, Stochasticity modeling in memristors. IEEE Trans. Nanotechnol. 1, 15–28 (2016)CrossRefGoogle Scholar
  28. 28.
    Y.V. Pershin, M.D. Ventra, Emulation of floating memcapacitors and meminductors using current conveyors. Electron. Lett. 4, 243–244 (2011)CrossRefGoogle Scholar
  29. 29.
    T. Prodromakis, B.P. Peh, C. Papavassiliou, C. Toumazou, A versatile memristor model with nonlinear dopant kinetics. IEEE Trans. Electron Devices 9, 3099–3105 (2011)CrossRefGoogle Scholar
  30. 30.
    M.P. Sah, R.K. Budhathoki, C. Yang, Expandable circuits of mutator-based memcapacitor emulator. Int. J. Bifurc. Chaos 23(5), 1330017 (2013)MathSciNetCrossRefGoogle Scholar
  31. 31.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 80–83 (2008)CrossRefGoogle Scholar
  32. 32.
    A.C. Torrezan, J.P. Strachan, G. Medeiros-Ribeiro, R.S. Williams, Sub-nanosecond switching of a tantalum oxide memristor. Nanotech 48, 485203(1)–485203(7) (2011)Google Scholar
  33. 33.
    I. Vourkas, D. Stathis, G.C. Sirakoulis, S. Hamdioui, Alternative architectures toward reliable memristive crossbar memories. IEEE Trans. Very Large Scale Integr. Syst. 1, 206–217 (2016)CrossRefGoogle Scholar
  34. 34.
    X. Wang, Y. Chen, H. Xi, D. Dimitrov, Spintronic memristor through spin-torque-induced magnetization motion. IEEE Electron Device Lett. 3, 294–297 (2009)CrossRefGoogle Scholar
  35. 35.
    X. Wang, A. Fitch, Implementation of an analogue model of a memristor based on a light-dependent resistor. Chin. Phys. B 21(10), 108501 (2012)CrossRefGoogle Scholar
  36. 36.
    S. Wen, M.Z.Q. Chen, Z. Zeng, T. Huang, C. Li, Adaptive neural-fuzzy sliding-mode fault-tolerant control for uncertain nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47, 2268–2278 (2017)CrossRefGoogle Scholar
  37. 37.
    S. Wen, R. Hu, Y. Yang, Z. Zeng, T. Huang, Y. Song, Memristor-based echo state network with online least mean square. IEEE Trans. Syst. Man Cybern. Syst. (2018).  https://doi.org/10.1109/TSMC.2018.2825021 Google Scholar
  38. 38.
    S. Wen, H. Wei, T. Huang, Z. Zeng, Memristive fully convolutional networks: an accurate hardware image-segmentor in deep learning. IEEE Trans. Emerg. Topics Comput. Intell.  https://doi.org/10.1109/TETCI.2018.2829911
  39. 39.
    S. Wen, S. Xiao, Y. Yang, Z. Yan, Z. Zeng, T. Huang, Adjusting the learning rate of memristor-based multilayer neural networks via fuzzy method. IEEE Trans. Comput. Aided Design Integr. Circuits Syst. (2018).  https://doi.org/10.1109/TCAD.2018.2834436 Google Scholar
  40. 40.
    S. Wen, X. Xie, Z. Yan, T. Huang, Z. Zeng, General memristor with applications in multilayer neural networks. Neural Netw. (2018).  https://doi.org/10.1016/j.neunet.2018.03.015 Google Scholar
  41. 41.
    R.S. Williams, How we found the missing memristor. IEEE Spectr. 45, 28–35 (2008)CrossRefGoogle Scholar
  42. 42.
    C. Wu, J. Liu, Y. Xiong, L. Wu, Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. (2017).  https://doi.org/10.1109/TNNLS.2017.2712619 Google Scholar
  43. 43.
    S. Xiao, X. Xie, S. Wen, Z. Zeng, T. Huang, J. Jiang, GST-memristor-based online learning neural networks. Neurocomputing 272, 677–682 (2018)CrossRefGoogle Scholar
  44. 44.
    X. Xie, S. Wen, Z. Zeng, T. Huang, Memristor-based circuit implementation of pulse-coupled neural network with dynamical threshold generator. Neurocomputing 284, 10–16 (2018)CrossRefGoogle Scholar
  45. 45.
    K. Xu, Two memristor SPICE models and their applications in microwave devices. IEEE Trans. Nanotechnol. 3, 607–616 (2014)CrossRefGoogle Scholar
  46. 46.
    D.S. Yu, Y. Liang, H. Chen, Design of a memcapacitor emulator based on a memristor. Phys. Lett. 4, 394–399 (2012)Google Scholar
  47. 47.
    D.S. Yu, Y. Liang, H. Chen, Design of a practical memcapacitor emulator without grounded restriction. IEEE Trans. Circuits Syst. II Express Briefs 4, 207–211 (2013)CrossRefGoogle Scholar
  48. 48.
    Q. Zhou, H. Li, L. Wang, R. Lu, Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. (2017).  https://doi.org/10.1109/TSMC.2017.2738155 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Xudong Xie
    • 1
    • 2
  • Liangji Zou
    • 1
    • 2
  • Shiping Wen
    • 1
    • 2
  • Zhigang Zeng
    • 1
    • 2
  • Tingwen Huang
    • 3
  1. 1.Department of Control Science and EngineeringHuazhong University of Science and TechnologyWuhanChina
  2. 2.Key Laboratory of Image Processing and Intelligent Control of Education Ministry of ChinaWuhanChina
  3. 3.Science ProgramTexas A&M University at QatarDohaQatar

Personalised recommendations