Skip to main content
Log in

Least-Element Time-Stepping Methods for Simulation of Linear Networks with Ideal Switches

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Linear networks with ideal switches have various applications in power converters, signal processing and control problems, which can be modeled by linear complementarity systems (LCSs). This paper presents new results on the least-element time-stepping method for simulation of linear networks with ideal switches for a class of LCSs. The method is efficient and stable and can be easily implemented. The convergence results and preliminary numerical results show that the least-element time-stepping method is efficient for verifying accuracy of approximate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. V. Acary, O. Bonnefon, B. Brogliato, Nonsmooth Modeling and Simulation for Switched Circuits, vol. 69 (Springer, Dordrecht, 2010)

    MATH  Google Scholar 

  2. V. Acary, O. Bonnefon, B. Brogliato, Time-stepping numerical simulation of switched circuits within the nonsmooth dynamical systems approach. IEEE Trans. Comput.-Aided Des. Integr. Circ. Syst. 29, 1042–1055 (2010)

    Article  Google Scholar 

  3. M.D. Bernardo, C. Budd, A. Champneys, P. Kowalczyk, Piecewise-Smooth Dynamical Systems: Theory and Applications (Springer, New York, 2008)

    MATH  Google Scholar 

  4. M.D. Bernardo, F. Garefalo, L. Glielmo, F. Vasca, Switchings, bifurcations, and chaos in DC/DC converters. IEEE Trans. Circuit Syst. I(45), 133–141 (1998)

    Article  Google Scholar 

  5. M.D. Bernardo, F. Vasca, Switchings, bifurcations, and chaos in DC/DC converters. IEEE Trans. Circuit Syst. I(45), 133–141 (1998)

    Article  Google Scholar 

  6. B. Brogliato, A. Daniilidis, C. Lemaréchal, V. Acary, On the equivalence between complementarity systems, projected systems and differential inclusions. Syst. Control Lett. 55, 45–51 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. B. Brogliato, D. Goeleven, Existence, uniqueness of solutions and stability of nonsmooth multivalued Lur’e dynamical systems. J. Convex Anal. 20, 881–900 (2013)

    MathSciNet  MATH  Google Scholar 

  8. M. Camlibel, Complementarity methods in the analysis of piecewise linear dynamical systems. Ph.D. thesis, Center for Economic Research, Tilburg University, The Netherlands (2001)

  9. M. Camlibel, W. Heemels, J. Schumacher, Consistency of a time-stepping method for a class of piecewise-linear networks. IEEE Trans. Circuit Syst. I(49), 349–357 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  10. M. Camlibel, W. Heemels, J. Schumacher, On linear passive complementarity systems. Eur. J. Control 8, 220–237 (2002)

    Article  MATH  Google Scholar 

  11. M. Camlibel, L. Iannelli, F. Vasca, Passivity and complementarity. Math. Program., Ser. A 145, 531–563 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. M.K. Camlibel, W.P.M.H. Heemels, A. van der Schaft, J. Schumacher, Switched networks and complementarity. IEEE Trans. Circuits Syst. I(50), 1036–1046 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. X. Chen, Z. Wang, Computational error bounds for differential linear variational inequality. IMA J. Numer. Anal. 32, 957–982 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. X. Chen, S. Xiang, Newton iterations in implicit time-stepping method for differential linear complementarity systems. Math. Program. Ser. A 138, 579–606 (2013)

    Article  MATH  Google Scholar 

  15. L. Chua, Nonlinear circuits. IEEE Trans. Circuits Syst. I(31), 69–87 (1984)

    Article  MATH  Google Scholar 

  16. R. Cottle, J.S. Pang, R. Stone, The Linear Complementarity Problem (Academic Press, Boston, 1992)

    MATH  Google Scholar 

  17. R. Frasca, M. Camlibel, I. Goknar, L. Iannelli, F. Vasca, Linear passive networks with ideal switches: consistent initial conditions and state discontinuities. IEEE Trans. Circuit Syst. I(57), 3138–3151 (2010)

    Article  MathSciNet  Google Scholar 

  18. L. Han, A. Tiwari, M. Camlibel, J.S. Pang, Convergence of time-stepping schemes for passive and extended linear complementarity systems. SIAM J. Numer. Anal. 47, 3768–3796 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. W. Heemels, B. Brogliato, The complementarity class of hybrid dynamical systems. Eur. J. Control 9, 322–360 (2010)

    Article  MATH  Google Scholar 

  20. W.P.M.H. Heemels, M. Camlibel, A. van der Schaft, J. Schumacher, Modelling, well-posedness, and stability of switched electrical networks, in Hybrid Systems: Computation and Control, ed. by O. Maler, A. Pnueli (Springer, Berlin, 2003), pp. 249–266. (chap. LNCS 2623)

    Chapter  Google Scholar 

  21. W.P.M.H. Heemels, M.K. Camlibel, J.M. Schumacher, B. Brogliato, Observer-based control of linear complementarity systems. Int. J. Robust Nonlinear Contr. 21, 1193–1218 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. W.P.M.H. Heemels, M.K. Camlibel, J. Schumacher, On the dynamic analysis of piecewise linear networks. IEEE Trans. Circuit Syst. I(49), 315–327 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. D. Leenaerts, On linear complementarity systems. IEEE Trans. Circuit Syst. I(46), 1022–1026 (1999)

    Article  MATH  Google Scholar 

  24. D. Leenaerts, W. Bokhoven, Piecewise Linear Modeling and Analysis (Kluwer, Deventer, 1998)

    Book  Google Scholar 

  25. Y. Lootsma, A.J. van der Schaft, M. Camlibel, Uniqueness of solutions of relay systems. Automatica 35, 467–478 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  26. J.S. Pang, Three modeling paradigms in mathematical programming. Math. Program. Ser. B 125, 297–323 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. J.S. Pang, D. Stewart, Differential variational inequalities. Math. Program. Ser. A 113, 345–424 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  28. J.M. Schumacher, Complementarity systems in optimization. Math. Program. Ser. B 101, 263–295 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  29. V. Sessa, L. Iannelli, F. Vasca, A complementarity model for closed-loop power converters. IEEE Trans. Power Electron. 29(12), 6821–6835 (2014)

    Article  Google Scholar 

  30. M. Tadeusiewicz, A. Kuczyński, A very fast method for the DC analysis of diode–transistor circuits. Circuits Syst. Signal Process. 32(2), 433–451 (2013)

    Article  MathSciNet  Google Scholar 

  31. L. Vandenberghe, B.L.D. Moor, J. Vandewalle, The generalized linear complementarity problem applied to the complete analysis of resistive piecewise-linear circuits. IEEE Trans. Circuit Syst. I(36), 1382–1391 (1989)

    Article  MathSciNet  Google Scholar 

  32. A.J. van der Schaft, J.M. Schumacher, The complementarity-slackness class of hybrid systems. Math. Contr. Signals Syst. 9, 266–301 (1996)

    Article  MATH  Google Scholar 

  33. A.J. van der Schaft, J.M. Schumacher, Complementarity modeling of hybrid systems. IEEE Trans. Autom. Control 43, 483–490 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  34. J. van Eijndhoven, Solving the linear complementarity problem in circuit simulation. SIAM J. Control Optim. 24, 1050–1062 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  35. F. Vasca, L. Iannelli, M.K. Camlibel, R. Frasca, A new perspective for modeling power electronics converters: complementarity framework. IEEE Trans. Power Electron. 24, 456–468 (2009)

    Article  Google Scholar 

  36. X. Yao, L. Wu, W.X. Zheng, C. Wang, Passivity analysis and passification of Markovian jump systems. Circuits Syst. Signal Process. 29(4), 709–725 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referees for their helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Zhou.

Additional information

This work is supported partly by Hong Kong Research Grant Council Grant PolyU153016/16P, National Natural Science Foundation of China (No. 11771454, No. 11626147) and Mathematics and Interdisciplinary Sciences Project, Central South University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiang, S., Chen, X. & Zhou, Y. Least-Element Time-Stepping Methods for Simulation of Linear Networks with Ideal Switches. Circuits Syst Signal Process 38, 1432–1451 (2019). https://doi.org/10.1007/s00034-018-0924-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0924-3

Keywords

Navigation