Skip to main content
Log in

Fault Detection and Isolation for Semi-Markov Jump Systems with Generally Uncertain Transition Rates Based on Geometric Approach

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper studies the problem of fault detection and isolation (FDI) for continuous-time semi-Markov jump systems (S-MJSs) with generally uncertain transition. Firstly, a class of residual signals and fault model of S-MJSs with generally uncertain transition rates are designed. Secondly, the parameters of residual generator are obtained by a geometric approach, such that each fault is affected by one fault and decoupled from other faults. The fault states can be determined by comparing the residual output signals with the threshold. Finally, simulation results of FDI based on geometric approach are provided to illustrate the effectiveness of the proposed theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G. Balas, J. Bokor, Z. Szabo, Invariant subspaces for LPV systems and their applications. IEEE Trans. Autom. Control 48, 2065–2069 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Baniamerian, K. Khorasani, Fault detection and isolation of dissipative parabolic PDEs: finite-dimensional geometric approach, in American Control Conference (ACC) (IEEE, 2012), pp. 5894–5899

  3. E.K. Boukas, Stochastic Switching Systems: Analysis and Design (Springer, Berlin, 2007)

  4. W. Ding, Z. Mao, B. Jiang, W. Chen, Fault detection for a class of nonlinear networked control systems with Markov transfer delays and stochastic packet drops. Circuits Syst. Signal Process. 34, 1211–1231 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Z. Fei, H. Gao, P. Shi, New results on stabilization of Markovian jump systems with time delay. Automatica 45, 2300–2306 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Y. Guo, Z. Wang, Stability of Markovian jump systems with generally uncertain transition rates. J. Frankl. Inst. 350, 2826–2836 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. F. Hamelin, C. Defranoux, F. Rambeaux, A geometric approach for fault detection and isolation in dynamic uncertain systems, in Decision and Control, Proceedings of the 38th IEEE Conference (IEEE, 1999), pp. 3122–3127

  8. S. He, F. Liu, Fuzzy model-based fault detection for Markov jump systems. Int. J. Robust Nonlinear Control 19, 1248–1266 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  9. S. He, F. Liu, On delay-dependent stability of Markov jump systems with distributed time-delays. Circuits Syst. Signal Process. 30, 323–337 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. J. Huang, Y. Shi, Stochastic stability of semi-Markov jump linear systems: an LMI approach, in 2011 50th IEEE Conference on Decision and Control and European Control Conference (CDC-ECC) (IEEE, 2011), pp. 4668–4673

  11. J. Huang, Y. Shi, Stochastic stability and robust stabilization of semi-Markov jump linear systems. Int. J. Robust Nonlinear Control 23, 2028–2043 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Jiang, X. Zhang, B. Gu, F. Pan, Reliable fault detection for nonlinear networked systems with imperfect measurements: a multi-packet transmission mechanism. Circuits Syst. Signal Process. 33, 1153–1172 (2014)

    Article  Google Scholar 

  13. H.R. Karimi, N.A. Duffie, S. Dashkovskiy, Local capacity \({H}_{\infty }\) control for production networks of autonomous work systems with time-varying delays. IEEE Trans. Autom. Sci. Eng. 7, 849–857 (2010)

    Article  Google Scholar 

  14. S.K. Kommuri, M. Defoort, H.R. Karimi, K.C. Veluvolu, A robust observer-based sensor fault-tolerant control for PMSM in electric vehicles. IEEE Trans. Ind. Electron. 63, 7671–7681 (2016)

    Article  Google Scholar 

  15. H.R. Karimi, H. Gao, Mixed \({H}_{2 }\)/\({H}_{\infty }\) output-feedback control of second-order neutral systems with time-varying state and input delays. ISA Trans. 47, 311–324 (2008)

    Article  Google Scholar 

  16. S.T. Kandukuri, A. Klausen, H.R. Karimi, K.G. Robbersmyr, A review of diagnostics and prognostics of low-speed machinery towards wind turbine farm-level health management. Renew. Sustain. Energy Rev. 53, 697–708 (2016)

    Article  Google Scholar 

  17. W.H. Kwon, P.S. Kim, P.G. Park, A receding horizon Kalman FIR filter for linear continuous-time systems. IEEE Trans. Autom. Control 44, 2115–2120 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. H.R. Karimi, N. Luo, Robust synchronization and fault detection of uncertain master-slave systems with mixed time-varying delays and nonlinear perturbations. Int. J. Control Autom. Syst. 9, 671–680 (2011)

    Article  Google Scholar 

  19. H.R. Karimi, B. Moshiri, B. Lohmann, P. Jabehdar Maralani, Haar wavelet-based approach for optimal control of second-order linear systems in time domain. J. Dyn. Control Syst. 11, 237–252 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. H.J. Kushner, Stochastic Stability and Control (Brown University, Providence, 1967)

    MATH  Google Scholar 

  21. H. Li, H. Gao, P. Shi, X. Zhao, Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50, 1825–1834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Li, Adaptive control with optimal tracking performance. Int. J. Syst. Sci. 49, 496–510 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  23. X. Li, H. Reza Karimi, Y. Wang, D. Lu, S. Guo, Robust fault estimation and fault-tolerant control for Markovian jump systems with general uncertain transition rates. J. Frankl. Inst. 355, 3508–3540 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  24. Y. Li, H. Reza Karimi, Q. Zhang, D. Zhao, Y. Li, Fault detection for linear discrete time-varying systems subject to random sensor delay: a Riccati equation approach. IEEE Trans. Circuits Syst. I Regul. Pap. 65, 1707–1716 (2017)

    Article  Google Scholar 

  25. H. Liang, H. Li, Z. Yu, P. Li, W. Wang, Cooperative robust containment control for general discrete-time multi-agent systems with external disturbance. IET Control Theory Appl. 11, 1928–1937 (2017)

    Article  MathSciNet  Google Scholar 

  26. N. Limnios, G. Oprisan, Semi-Markov Processes and Reliability (Springer, Berlin, 2012)

    MATH  Google Scholar 

  27. R. Lu, P. Shi, H. Su, Z.G. Wu, J. Lu, Synchronization of general chaotic neural networks with nonuniform sampling and packet missing: a switched system approach. IEEE Trans. Neural Netw. Learn. Syst. 29, 523–533 (2016)

    Article  MathSciNet  Google Scholar 

  28. F. Li, P. Shi, L. Wu, Event-triggered fault detection for semi-Markovian jump systems, in Control and Filtering for Semi-Markovian Jump Systems, ed. by Li, F., et al. (Springer, Berlin, 2017), pp. 133–148

  29. L. Li, G. Yang, Fault estimation for a class of nonlinear Markov jump systems with general uncertain transition rates. Int. J. Syst. Sci. 48, 805–817 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  30. H. Li, Q. Zhao, Reliability evaluation of fault tolerant control with a semi-Markov fault detection and isolation model. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 220, 329–338 (2006)

    Article  Google Scholar 

  31. H. Liang, Y. Zhou, H. Ma, Q. Zhou, Adaptive distributed observer approach for cooperative containment control of nonidentical networks. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2018.2791513

    Google Scholar 

  32. M.A. Massoumnia, A geometric approach to the synthesis of failure detection filters. IEEE Trans. Autom. Control 31, 839–846 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  33. N. Meskin K. Khorasani, A geometric approach to fault detection and isolation of neutral time-delay systems, in American Control Conference (ACC) (IEEE, 2008), pp. 3293–3298

  34. N. Meskin, K. Khorasani, A geometric approach to fault detection and isolation of continuous-time Markovian jump linear systems. IEEE Trans. Autom. Control 55, 1343–1357 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  35. N. Meskin, K. Khorasani, Actuator fault detection and isolation for a network of unmanned vehicles. IEEE Trans. Autom. Control 54, 835–840 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  36. S.P. Meyn, R.L. Tweedie, Stability of Markovian processes III: Foster–Lyapunov criteria for continuous time processes. Adv. Appl. Probab. 25, 518–548 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  37. Z. Ning, J. Shen, P. Shi, L. Zhang, Z. Jiang, Stability and stabilization of discrete-time semi-Markov jump linear systems with delay in controller mode switching, in 2016 IEEE 55th Conference on Decision and Control (CDC) (IEEE, 2016), pp. 3720–3725

  38. Y. Pan, H. Li, Qi Zhou, Fault detection for interval type-2 fuzzy systems with sensor nonlinearities. Neurocomputing 145, 488–494 (2014)

    Article  Google Scholar 

  39. Y. Pan, G. Yang, Switched filter design for interval type-2 fuzzy systems with sensor nonlinearities. Neurocomputing 194, 168–175 (2016)

    Article  Google Scholar 

  40. Y. Pan G. Yang, Event-triggered fault detection filter design for nonlinear networked systems. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2719629

  41. S. Rathinasamy, H. Reza Karimi, M. Joby, S. Santra, Resilient sampled-data control for Markovian jump systems with adaptive fault-tolerant mechanism. IEEE Trans. Circuits Syst. II Express Briefs 64, 1312–1316 (2017)

    Article  Google Scholar 

  42. L. Rong, X. Peng, B. Zhang, Fault detection reduced-order filter design for discrete-time Markov jump system with deficient transition information. EURASIP J. Adv. Signal Process. (2016). https://doi.org/10.1186/s13634.016.0374.7

    Google Scholar 

  43. P. Seiler, J. Bokor, B. Vanek, G. J. Balas, Robust model matching for geometric fault detection filters, in American Control Conference (ACC) (IEEE, 2011), pp. 226–231

  44. E. Shmerling, K.J. Hochberg, Stability of stochastic jump-parameter semi-Markov linear systems of differential equations. Stoch. Int. J. Probab. Stoch. Processes 80, 513–518 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  45. C. Wu, Z. Hu, J. Liu, L. Wu, Secure estimation for cyber-physical systems via sliding mode. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2825984

    Google Scholar 

  46. C. Wu, J. Liu, X. Jing, H. Li, L. Wu, Adaptive fuzzy control for nonlinear networked control systems. IEEE Trans. Syst. Man Cybern. Syst. 47, 2420–2430 (2017)

    Article  Google Scholar 

  47. C. Wu, J. Liu, Y. Xiong, L. Wu, Observer-based adaptive fault-tolerant tracking control of nonlinear nonstrict-feedback systems. IEEE Trans. Neural Netw. Learn. Syst. (2017). https://doi.org/10.1109/TNNLS.2017.2712619

    Google Scholar 

  48. D. Yue, J. Fang, S. Won, Delay-dependent robust stability of stochastic uncertain systems with time delay and Markovian jump parameters. Circuits Syst. Signal Process. 22, 351–365 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  49. D. Yao, R. Lu, Y. Xu, L. Wang, Robust \({H}_{\infty }\) filtering for Markov jump systems with mode-dependent quantized output and partly unknown transition probabilities. Signal Process. 137, 328–338 (2017)

    Article  Google Scholar 

  50. L. Zhang, E. Boukas, \({H}_{\infty }\) control for discrete-time Markovian jump linear systems with partly unknown transition probabilities. Int. J. Robust Nonlinear Control 19, 868–883 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  51. L. Zhang, E. Boukas, Stability and stabilization of Markovian jump linear systems with partly unknown transition probabilities. Automatica 45, 463–468 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  52. L. Zhang, E.K. Boukas, L. Baron, Fault detection for discrete-time Markov jump linear systems with partially known transition probabilities. Int. J. Control 83, 1564–1572 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Y. Zhang, H. Fang, Z. Liu, Fault detection for nonlinear networked control systems with Markov data transmission pattern. Circuits Syst. Signal Process. 31, 1343–1358 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  54. Y. Zheng, H. Fang, H.O. Wang, Takagi–Sugeno fuzzy-model-based fault detection for networked control systems with Markov delays. IEEE Trans. Syst. Man Cybern. Part B 36, 924–929 (2006)

    Article  Google Scholar 

  55. M. Zhong, H. Ye, P. Shi, G. Wang, Fault detection for Markovian jump systems. IEE Proc. Control Theory Appl. 152, 397–402 (2005)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (61703051, 61673072), the Guangdong Natural Science Funds for Distinguished Young Scholar (2017A030306014), the Department of Education of Guangdong Province (2016KTSCX030) and the Department of Education of Liaoning Province (LZ2017001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjing Liang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Liang, H., Ma, H. et al. Fault Detection and Isolation for Semi-Markov Jump Systems with Generally Uncertain Transition Rates Based on Geometric Approach. Circuits Syst Signal Process 38, 1039–1062 (2019). https://doi.org/10.1007/s00034-018-0919-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0919-0

Keywords

Navigation