## Abstract

Sparse signals are characterized by a few nonzero coefficients in one of their transformation domains. This was the main premise in designing signal compression algorithms. Compressive sensing as a new approach employs the sparsity property as a precondition for signal recovery. Sparse signals can be fully reconstructed from a reduced set of available measurements. The description and basic definitions of sparse signals, along with the conditions for their reconstruction, are discussed in the first part of this paper. The numerous algorithms developed for the sparse signals reconstruction are divided into three classes. The first one is based on the principle of matching components. Analysis of noise and nonsparsity influence on reconstruction performance is provided. The second class of reconstruction algorithms is based on the constrained convex form of problem formulation where linear programming and regression methods can be used to find a solution. The third class of recovery algorithms is based on the Bayesian approach. Applications of the considered approaches are demonstrated through various illustrative and signal processing examples, using common transformation and observation matrices. With pseudocodes of the presented algorithms and compressive sensing principles illustrated on simple signal processing examples, this tutorial provides an inductive way through this complex field to researchers and practitioners starting from the basics of sparse signal processing up to the most recent and up-to-date methods and signal processing applications.

This is a preview of subscription content, access via your institution.

## Notes

Consider a signal

*x*(*t*) of a duration*T*and its samples \(x(n\Delta t)\) satisfying the sampling theorem. The periodic extension of this signal can be written in a Fourier series (FS) form$$\begin{aligned} x(t) = \frac{1}{N}\sum \limits _{k = 0}^{N-1} {{X(k)}{\hbox {e}^{j2\pi k \frac{t}{T}}}}, \end{aligned}$$where the FS coefficients

*X*(*k*) are equal to the DFT coefficients if we use the notation*x*(*n*) for \(x(n\Delta t)\) and \(\Delta t=T/N\) as the sampling interval. When the sampling theorem is satisfied then$$\begin{aligned} X(k)=\frac{N}{T}\int \limits _0^Tx(t)\hbox {e}^{-j2 \pi kt/T}\hbox {d}t=\sum _{n=0}^{N-1}x(n)\hbox {e}^{-j2\pi kn/N}, \quad k=0,1,2,\dots ,N-1. \end{aligned}$$This is the DFT of a signal

*x*(*n*).

## References

M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process.

**54**(11), 4311–4322 (2006)N. Ahmed, T. Natarajan, K.R. Rao, Discrete cosine transform. IEEE Trans. Comput.

**C–23**(1), 90–93 (1974)M.G. Amin,

*Compressive Sensing for Urban Radar*(CRC Press, Boca Raton, 2014)D. Angelosante, G.B. Giannakis, E. Grossi, Compressed sensing of time-varying signals, in

*Proceedings of the 16th international conference on digital signal processing (DSP ’09)*(Santorini-Hellas, Greece, 2009), pp. 1–8E. Arias-Castro, Y. Eldar, Noise folding in compressed sensing. IEEE Signal Process. Lett.

**18**(8), 478–481 (2011)S.D. Babacan, R. Molina, A.K. Katsaggelos, Bayesian Compressive Sensing Using Laplace Priors. IEEE Transactions on Image Processing

**19**(1), 53–63 (2010)A.S. Bandeira, E. Dobriban, D.G. Mixon, W.F. Sawin, Certifying the restricted isometry property is hard. IEEE Trans. Inf. Theory

**59**(6), 3448–3450 (2013)R. Baraniuk, Compressive sensing. IEEE Signal Process. Mag.

**24**(4), 118–121 (2007)R.G. Baraniuk, T. Goldstein, A.C. Sankaranarayanan, C. Studer, A. Veeraraghavan, M.B. Wakin, Compressive video sensing: algorithms, architectures, and applications. IEEE Signal Process. Mag.

**34**(1), 52–66 (2017)D. Baron, S. Sarvotham, R.G. Baraniuk, Bayesian compressive sensing via belief propagation. IEEE Trans. Signal Process.

**58**(1), 269–280 (2010)J. Bazerque, G. Giannakis, Distributed spectrum sensing for cognitive radio networks by exploiting sparsity. IEEE Trans. Signal Process.

**58**(3), 1847–1862 (2010)A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci.

**2**(1), 183–197 (2009)C.R. Berger, Z. Wang, J. Huang, S. Zhou, Application of compressive sensing to sparse channel estimation. IEEE Commun. Mag.

**48**(11), 164–174 (2010)J.M. Bioucas-Dias, M.A.T. Figueiredo, A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process.

**16**(12), 2992–3004 (2007)J.D. Blanchard, Cartis, J. Tanner, Compressed sensing: how sharp is the restricted isometry property? SIAM Rev.

**53**(1), 105–125 (2011)T. Blumensath, M.E. Davies, Gradient pursuits. IEEE Trans. Signal Process.

**56**(6), 2370–2382 (2008)T. Blumensath, M.E. Davies, Iterative thresholding for sparse approximations. J. Fourier Anal. Appl.

**14**(5–6), 629–654 (2008)J. Bobin, J.L. Starck, R. Ottensamer, Compressed sensing in astronomy. IEEE J. Sel. Top. Signal Process.

**2**(5), 718–726 (2008)S. Boyd, L. Vandenberghe,

*Convex Optimization*(Cambridge University Press, Cambridge, 2004)M. Brajovic, I. Orović, M. Daković, S. Stanković, On the parameterization of Hermite transform with application to the compression of QRS complexes. Signal Process.

**131**, 113–119 (2017)M. Brajovic, I. Orović, M. Daković, S. Stanković, Gradient-based signal reconstruction algorithm in the Hermite transform domain. Electron. Lett.

**52**(1), 41–43 (2016)M. Brajovic, I. Stanković, M. Daković, C. Ioana, L. Stanković, Error in the reconstruction of nonsparse images. Math. Probl. Eng.

**2018**, 10. Article ID 4314527 (2018). https://doi.org/10.1155/2018/4314527L. Breiman, Better subset regression using the nonnegative garrote. Technometrics

**37**(4), 373–384 (1995)E.J. Candès, The restricted isometry property and its implications for compressed sensing. C. R. Math.

**346**(9–10), 589–592 (2008)E.J. Candès, J. Romberg, \(\ell_1\)-magic: recovery of sparse signals via convex programming. Caltech, http://users.ece.gatech.edu/justin/l1magic/downloads/l1magic.pdf. Oct 2005

E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory

**52**(2), 489–509 (2006)E.J. Candès, M. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag.

**25**(2), 21–30 (2008)R. Chartrand, V. Staneva, Restricted isometry properties and nonconvex compressive sensing. Inverse Probl.

**24**(3), 035020-1-14 (2008)S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM Rev.

**43**(1), 129–159 (2001)D. Craven, B. McGinley, L. Kilmartin, M. Glavin, E. Jones, Compressed sensing for bioelectric signals: a review. IEEE J. Biomed. Health Inf.

**19**(2), 529–540 (2015)S. Costanzo, A. Rocha, M.D. Migliore, Compressed sensing: applications in radar and communications. Sci. World J.

**2016**, 2. Article ID 5407415 (2016)I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math.

**57**(11), 1413–1457 (2004)G. Davis, S. Mallat, M. Avellaneda, Adaptive greedy approximations. Constr. Approx.

**13**(1), 57–98 (1997)D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory

**52**(4), 1289–1306 (2006)D.L. Donoho, M. Elad, V. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory

**52**(1), 6–18 (2006)M. Elad,

*Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing*(Springer, Berlin, 2010)Y.C. Eldar, G. Kutyniok,

*Compressed Sensing: Theory and Applications*(Cambridge University Press, Cambridge, 2012)J. Ender, On compressive sensing applied to radar. Signal Process.

**90**(5), 1402–1414 (2010)N. Eslahi, A. Aghagolzadeh, Compressive sensing image restoration using adaptive curvelet thresholding and nonlocal sparse regularization. IEEE Trans. Image Process.

**25**(7), 3126–3140 (2016)M.A. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process.

**1**(4), 586–597 (2007)P. Flandrin, P. Borgnat, Time-frequency energy distributions meet compressed sensing. IEEE Trans. Signal Process.

**58**(6), 2974–2982 (2010)M. Fornsaier, H. Rauhut, Iterative thresholding algorithms. Appl. Comput. Harmon. Anal.

**25**(2), 187–208 (2008)M.A. Hadi, S. Alshebeili, K. Jamil, F.E. Abd El-Samie, Compressive sensing applied to radar systems: an overview. Signal Image Video Process.

**9**, 25–39 (2015)G. Hua, Y. Hiang, G. Bi, When compressive sensing meets data hiding. IEEE Signal Process. Lett.

**23**(4), 473–477 (2016)S. Ji, Y. Xue, L. Carin, Bayesian compressive sensing. IEEE Trans. Signal Process.

**56**(6), 2346–2356 (2008)P. Lander, E.J. Berbari, Principles and signal processing techniques of the high-resolution electrocardiogram. Prog. Cardiovasc. Dis.

**35**(3), 169–188 (1992)C. Li, G. Zhao, W. Zhang, Q. Qiu, H. Sun, ISAR imaging by two-dimensional convex optimization-based compressive sensing. IEEE Sens. J.

**16**(19), 7088–7093 (2016)X. Li, G. Bi, Time-frequency representation reconstruction based on the compressive sensing, in

*9th IEEE Conference on Industrial Electronics and Applications*(Hangzhou, 2014), pp. 1158–1162X. Liao, K. Li, J. Yin, Separable data hiding in encrypted image based on compressive sensing and discrete Fourier transform. Multimed. Tools Appl.

**76**, 1–15 (2016)S. Liu, Y.D. Zhang, T. Shan, Detection of weak astronomical signals with frequency-hopping interference suppression. Digit. Signal Process.

**72**, 1–8 (2018)S. Liu, Y.D. Zhang, T. Shan, S. Qin, M.G. Amin, Structure-aware Bayesian compressive sensing for frequency-hopping spectrum estimation, in

*Proceedings of SPIE 9857, Compressive Sensing V: From Diverse Modalities to Big Data Analytics*(2016), p. 98570NS. Liu, Y.D. Zhang, T. Shan, R. Tao, Structure-aware Bayesian compressive sensing for frequency-hopping spectrum estimation with missing observations. IEEE Trans. Signal Process.

**66**(8), 2153–2166 (2018)S. Liu, J.B. Jia, Y.J. Yang, Image reconstruction algorithm for electrical impedance tomography based on block sparse Bayesian learning, in

*Proceedings of IEEE International Conference on Imaging Systems and Techniques (IST)*(Beijing, China, Oct. 18–20, 2017)Y. Liu, M. De Vos, S. Van Huffel, Compressed sensing of multichannel EEG signals: the simultaneous cosparsity and low-rank optimization. IEEE Trans. Biomed. Eng.

**62**(8), 2055–2061 (2015)W. Lu, N. Vaswani, Regularized modified BPDN for noisy sparse reconstruction with partial erroneous support and signal value knowledge. IEEE Trans. Signal Process.

**60**(1), 182–196 (2012)S. Luo, P. Johnston, A review of electrocardiogram filtering. J. Electrocardiol.

**43**(6), 486–496 (2010)X. Lv, G. Bi, C. Wan, The group lasso for stable recovery of block-sparse signal representations. IEEE Trans. Signal Process.

**59**(4), 1371–1382 (2011)S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process.

**41**(12), 3397–3415 (1993)J.B. Martens, The Hermite transform—theory. IEEE Trans. Acoust. Speech Signal Process.

**38**(9), 1595–1606 (1990)S.A. Martucci, Symmetric convolution and the discrete sine and cosine transforms. IEEE Trans. Signal Process.

**42**(5), 1038–1051 (1994)J. Music, T. Marasovic, V. Papic, I. Orović, S. Stanković, Performance of compressive sensing image reconstruction for search and rescue. IEEE Geosci. Remote Sens. Lett.

**13**(11), 1739–1743 (2016)J. Music, I. Orović, T. Marasovic, V. Papic, S. Stanković, Gradient compressive sensing for image data reduction in UAV based search and rescue in the wild. Math. Probl. Eng.

**2016**, 6827414 (2016)D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from noisy samples. Appl. Comput. Harmon. Anal. (2008). https://doi.org/10.1016/j.acha.2008.07.002

D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. ACM Technical Report, 2008-01 (California Institute of Technology, Pasadena, 2008)

D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Commun. ACM

**53**(12), 93–100 (2010)B. Ophir, M. Lustig, M. Elad, Multi-scale dictionary learning using wavelets. IEEE J. Sel. Top. Signal Process.

**5**(5), 1014–1024 (2011)I. Orović, V. Papic, C. Ioana, X. Li, S. Stanković, Compressive sensing in signal processing: algorithms and transform domain formulations. Math. Probl. Eng.

**2016**, 1 (2016)I. Orović, S. Stanković, Improved higher order robust distributions based on compressive sensing reconstruction. IET Signal Process.

**8**(7), 738–748 (2014)I. Orović, S. Stanković, T. Chau, C.M. Steele, E. Sejdic, Time-frequency analysis and Hermite projection method applied to swallowing accelerometry signals. EURASIP J. Adv. Signal Process.

**2010**, p 7. Article ID 323125 (2010)I. Orović, S. Stanković, T. Thayaparan, Time-frequency based instantaneous frequency estimation of sparse signals from an incomplete set of samples. IET Signal Process. Spec. Issue Compressive Sens. Robust Transforms

**8**(3), 239–245 (2014)C. Ozdemir,

*Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms*(Wiley, Hoboken, 2012)M. Panic, J. Aelterman, V.S. Crnojevic, A. Pizurica, Compressed sensing in MRI with a Markov random field prior for spatial clustering of subband coefficients, in

*Proceedings of the EUSIPCO*(2016), pp. 562–566V.M. Patel, R. Chellappa,

*Sparse Representations and Compressive Sensing for Imaging and Vision*(Springer, Berlin, 2013)G. Pope, Compressive sensing: a summary of reconstruction algorithms. Eidgenossische Technische Hochschule, Zurich, Switzerland (2008), http://e-collection.library.ethz.ch/eserv/eth:41464/eth-41464-01.pdf. Aug 2008

L.C. Potter, E. Ertin, J.T. Parker, M. Cetin, Sparsity and compressed sensing in radar imaging. Proc. IEEE

**98**(6), 1006–1020 (2010)S. Qaisar, R.M. Bilal, W. Iqbal, M. Naureen, S. Lee, Compressive sensing: from theory to applications, a survey. J. Commun. Netw.

**15**(5), 443–456 (2013)R. Rubinstein, A.M. Bruckstein, M. Elad, Dictionaries for sparse representation modeling. Proc. IEEE

**98**(6), 1045–1057 (2010)R. Sameni, G.D. Clifford, A review of fetal ECG signal processing issues and promising directions. Open Pacing Electrophysiol. Therapy J.

**3**, 4–20 (2010)A. Sandryhaila, S. Saba, M. Puschel, J. Kovacevic, Efficient compression of QRS complexes using Hermite expansion. IEEE Trans. Signal Process.

**60**(2), 947–955 (2012)A. Sandryhaila, J. Kovacevic, M. Puschel, Compression of QRS complexes using Hermite expansion, in

*IEEE International Conference on Acoustic, Speech and Signal Process, ICASSP*(Prague, 2011), pp. 581–584E. Sejdic, Time-frequency compressive sensing, in

*Frequency Signal Analysis and Processing*, ed. B. Boashash (Academic Press, 2015), pp. 424–429I. Stanković, C. Ioana, M. Daković, On the reconstruction of nonsparse time-frequency signals with sparsity constraint from a reduced set of samples. Signal Process.

**142**, 480–484 (2018)I. Stanković, I. Orović, M. Daković, S. Stanković, Denoising of sparse images in impulsive disturbance environment. Multimed. Tools Appl. (2017). https://doi.org/10.1007/s11042-017-4502-7

L. Stanković,

*Digital Signal Processing with Applications: Adaptive Systems, Time-Frequency Analaysis, Sparse Signal Processing*(CreateSpace Independent Publishing Platform, North Charlestone, 2015)L. Stanković, A measure of some time-frequency distributions concentration. Signal Process.

**81**, 621–631 (2001)L. Stanković, On the ISAR image analysis and recovery with unavailable or heavily corrupted data. IEEE Trans. Aerosp. Electron. Syst.

**51**(3), 2093–2106 (2015)L. Stanković, M. Brajovic, Analysis of the reconstruction of sparse signals in the DCT domain applied to audio signals. IEEE/ACM Trans. Audio Speech Lang. Process.

**26**(7), 1216–1231 (2018)L. Stanković, M. Daković, On the uniqueness of the sparse signals reconstruction based on the missing samples variation analysis. Math. Probl. Eng.

**2015**, p 14 (2015). Article ID 629759. https://doi.org/10.1155/2015/629759L. Stanković, M. Daković, I. Stanković, S. Vujovic, On the errors in randomly sampled nonsparse signals reconstructed with a sparsity assumption. IEEE Geosci. Remote Sens. Lett.

**14**(12), 2453–2456 (2017)L. Stanković, M. Daković, S. Stanković, I. Orović,

*Sparse Signal Processing—Introduction. Wiley Encyclopedia of Electrical and Electronics Engineering*(Wiley, Hoboken, 2017)L. Stanković, M. Daković, T. Thayaparan,

*Time-Frequency Signal Analysis with Applications*(Artech House, Boston, 2013)L. Stanković, M. Daković, S. Vujovic, Adaptive variable step algorithm for missing samples recovery in sparse signals. IET Signal Process.

**8**(3), 246–256 (2014)L. Stanković, M. Daković, S. Vujovic, Reconstruction of sparse signals in impulsive disturbance environments. Circuits Syst. Signal Process.

**36**, 1–28 (2016)L. Stanković, I. Orović, S. Stanković, M. Amin, Compressive sensing based separation of non-stationary and stationary signals overlapping in time-frequency. IEEE Trans. Signal Process.

**61**(18), 4562–4572 (2013)L. Stanković, I. Stanković, M. Daković, Nonsparsity influence on the ISAR recovery from reduced data. IEEE Trans. Aerosp. Electron. Syst.

**52**(6), 3065–3070 (2016)L. Stanković, S. Stanković, M.G. Amin, Missing samples analysis in signals for applications to l-estimation and compressive sensing. Signal Process.

**94**, 401–408 (2014)L. Stanković, S. Stanković, T. Thayaparan, M. Daković, I. Orović, Separation and reconstruction of the rigid body and micro-Doppler signal in ISAR part II—statistical analysis. IET Radar Sonar Navig.

**9**(9), 1155–1161 (2015)L. Stanković, S. Stanković, T. Thayaparan, M. Daković, I. Orović, Separation and reconstruction of the rigid body and micro-Doppler signal in ISAR part I—theory. IET Radar Sonar Navig.

**9**(9), 1147–1154 (2015)S. Stanković, I. Orović, An approach to 2D signals recovering in compressive sensing context. Circuits Syst. Signal Process.

**36**(4), 1700–1713 (2017)S. Stanković, I. Orović, M. Amin, L-statistics based modification of reconstruction algorithms for compressive sensing in the presence of impulse noise. Signal Process.

**93**(11), 2927–2931 (2013)S. Stanković, I. Orović, A. Krylov, Video frames reconstruction based on time-frequency analysis and Hermite projection method. EURASIP J. Adv. Signal Process. Spec. Issue Time Freq. Anal. Appl. Multimed. Signals, 11. Article ID 970105 (2010)

S. Stanković, I. Orović, E. Sejdic,

*Multimedia Signals and Systems: Basic and Advanced Algorithms for Signal Processing*, 2nd edn. (Springer, Berlin, 2015)S. Stanković, I. Orović, L. Stanković, An automated signal reconstruction method based on analysis of compressive sensed signals in noisy environment. Signal Process.

**104**, 43–50 (2014)S. Stanković, I. Orović, L. Stanković, Polynomial Fourier domain as a domain of signal sparsity. Signal Process.

**130**, 243–253 (2017)S. Stanković, L. Stanković, I. Orović, Compressive sensing approach in the Hermite transform domain. Math. Probl. Eng., p 9. Article ID 286590 (2015)

S. Stanković, L. Stanković, I. Orović, A relationship between the robust statistics theory and sparse compressive sensed signals reconstruction. IET Signal Process.

**8**(3), 223–229 (2014)R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.)

**58**(1), 267–88 (1996)R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, K. Knight, Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B (Stat. Methodol.)

**67**(1), 91–108 (2005)M. Tipping, Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res.

**1**, 211–244 (2001)J.A. Tropp, Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory

**50**(10), 2231–2242 (2004)J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory

**53**(12), 4655–4666 (2007)D. Vukobratovic, A. Pizurica, Compressed sensing using sparse adaptive measurements, in

*Proceedings of the Symposium on Information Theory in the Benelux (SITB ’14)*(Eindhoven, The Netherlands, 2014)Y. Wang, J. Xiang, Q. Mo, S. He, Compressed sparse time-frequency feature representation via compressive sensing and its applications in fault diagnosis. Measurement

**68**, 70–81 (2015)L. Wang, L. Zhao, G. Bi, C. Wan, Hierarchical sparse signal recovery by variational Bayesian inference. IEEE Signal Process. Lett.

**21**(1), 110–113 (2014)L. Zhang, M. Xing, C.W. Qiu, J. Li, Z. Bao, Achieving higher resolution ISAR imaging with limited pulses via compressed sampling. IEEE Geosci. Remote Sens. Lett.

**6**(3), 567–571 (2009)T. Zhang, Sparse recovery with orthogonal matching pursuit under RIP. IEEE Trans. Inf. Theory

**57**(9), 6215–6221 (2011)Z. Zhang, T.P. Jung, S. Makeig, B.D. Rao, Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware. IEEE Trans. Biomed. Eng.

**60**(1), 221–224 (2013)Z. Zhang, B.D. Rao, Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE J. Sel. Top. Signal Process.

**5**(5), 912–926 (2011)Z. Zhang, B.D. Rao, Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Trans. Signal Process.

**61**(8), 2009–2015 (2013)L. Zhu, E. Liu, J.H. McClellan, Sparse-promoting full-waveform inversion based on online orthonormal dictionary learning. Geophysiscs

**82**(2), 87–107 (2017)Z. Zhu, K. Wahid, P. Babyn, D. Cooper, I. Pratt, Y. Carter, Improved compressed sensing-based algorithm for sparse-view CT image reconstruction. Comput. Math. Methods Med.

**2013**, 185750 (2013)

## Author information

### Authors and Affiliations

### Corresponding author

## Rights and permissions

## About this article

### Cite this article

Stanković, L., Sejdić, E., Stanković, S. *et al.* A Tutorial on Sparse Signal Reconstruction and Its Applications in Signal Processing.
*Circuits Syst Signal Process* **38**, 1206–1263 (2019). https://doi.org/10.1007/s00034-018-0909-2

Received:

Revised:

Accepted:

Published:

Issue Date:

DOI: https://doi.org/10.1007/s00034-018-0909-2

### Keywords

- Sparse signals
- Compressive sensing
- Signal sampling
- Signal representation
- Signal reconstruction
- Discrete Fourier transform