M. Aharon, M. Elad, A. Bruckstein, K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)
MATH
Google Scholar
N. Ahmed, T. Natarajan, K.R. Rao, Discrete cosine transform. IEEE Trans. Comput. C–23(1), 90–93 (1974)
MathSciNet
MATH
Google Scholar
M.G. Amin, Compressive Sensing for Urban Radar (CRC Press, Boca Raton, 2014)
Google Scholar
D. Angelosante, G.B. Giannakis, E. Grossi, Compressed sensing of time-varying signals, in Proceedings of the 16th international conference on digital signal processing (DSP ’09) (Santorini-Hellas, Greece, 2009), pp. 1–8
E. Arias-Castro, Y. Eldar, Noise folding in compressed sensing. IEEE Signal Process. Lett. 18(8), 478–481 (2011)
Google Scholar
S.D. Babacan, R. Molina, A.K. Katsaggelos, Bayesian Compressive Sensing Using Laplace Priors. IEEE Transactions on Image Processing 19(1), 53–63 (2010)
MathSciNet
MATH
Google Scholar
A.S. Bandeira, E. Dobriban, D.G. Mixon, W.F. Sawin, Certifying the restricted isometry property is hard. IEEE Trans. Inf. Theory 59(6), 3448–3450 (2013)
MathSciNet
MATH
Google Scholar
R. Baraniuk, Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–121 (2007)
Google Scholar
R.G. Baraniuk, T. Goldstein, A.C. Sankaranarayanan, C. Studer, A. Veeraraghavan, M.B. Wakin, Compressive video sensing: algorithms, architectures, and applications. IEEE Signal Process. Mag. 34(1), 52–66 (2017)
Google Scholar
D. Baron, S. Sarvotham, R.G. Baraniuk, Bayesian compressive sensing via belief propagation. IEEE Trans. Signal Process. 58(1), 269–280 (2010)
MathSciNet
MATH
Google Scholar
J. Bazerque, G. Giannakis, Distributed spectrum sensing for cognitive radio networks by exploiting sparsity. IEEE Trans. Signal Process. 58(3), 1847–1862 (2010)
MathSciNet
MATH
Google Scholar
A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–197 (2009)
MathSciNet
MATH
Google Scholar
C.R. Berger, Z. Wang, J. Huang, S. Zhou, Application of compressive sensing to sparse channel estimation. IEEE Commun. Mag. 48(11), 164–174 (2010)
Google Scholar
J.M. Bioucas-Dias, M.A.T. Figueiredo, A new TwIST: two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE Trans. Image Process. 16(12), 2992–3004 (2007)
MathSciNet
Google Scholar
J.D. Blanchard, Cartis, J. Tanner, Compressed sensing: how sharp is the restricted isometry property? SIAM Rev. 53(1), 105–125 (2011)
MathSciNet
MATH
Google Scholar
T. Blumensath, M.E. Davies, Gradient pursuits. IEEE Trans. Signal Process. 56(6), 2370–2382 (2008)
MathSciNet
MATH
Google Scholar
T. Blumensath, M.E. Davies, Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14(5–6), 629–654 (2008)
MathSciNet
MATH
Google Scholar
J. Bobin, J.L. Starck, R. Ottensamer, Compressed sensing in astronomy. IEEE J. Sel. Top. Signal Process. 2(5), 718–726 (2008)
Google Scholar
S. Boyd, L. Vandenberghe, Convex Optimization (Cambridge University Press, Cambridge, 2004)
MATH
Google Scholar
M. Brajovic, I. Orović, M. Daković, S. Stanković, On the parameterization of Hermite transform with application to the compression of QRS complexes. Signal Process. 131, 113–119 (2017)
Google Scholar
M. Brajovic, I. Orović, M. Daković, S. Stanković, Gradient-based signal reconstruction algorithm in the Hermite transform domain. Electron. Lett. 52(1), 41–43 (2016)
Google Scholar
M. Brajovic, I. Stanković, M. Daković, C. Ioana, L. Stanković, Error in the reconstruction of nonsparse images. Math. Probl. Eng. 2018, 10. Article ID 4314527 (2018). https://doi.org/10.1155/2018/4314527
L. Breiman, Better subset regression using the nonnegative garrote. Technometrics 37(4), 373–384 (1995)
MathSciNet
MATH
Google Scholar
E.J. Candès, The restricted isometry property and its implications for compressed sensing. C. R. Math. 346(9–10), 589–592 (2008)
MathSciNet
MATH
Google Scholar
E.J. Candès, J. Romberg, \(\ell_1\)-magic: recovery of sparse signals via convex programming. Caltech, http://users.ece.gatech.edu/justin/l1magic/downloads/l1magic.pdf. Oct 2005
E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)
MathSciNet
MATH
Google Scholar
E.J. Candès, M. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)
Google Scholar
R. Chartrand, V. Staneva, Restricted isometry properties and nonconvex compressive sensing. Inverse Probl. 24(3), 035020-1-14 (2008)
MathSciNet
MATH
Google Scholar
S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM Rev. 43(1), 129–159 (2001)
MathSciNet
MATH
Google Scholar
D. Craven, B. McGinley, L. Kilmartin, M. Glavin, E. Jones, Compressed sensing for bioelectric signals: a review. IEEE J. Biomed. Health Inf. 19(2), 529–540 (2015)
Google Scholar
S. Costanzo, A. Rocha, M.D. Migliore, Compressed sensing: applications in radar and communications. Sci. World J. 2016, 2. Article ID 5407415 (2016)
I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)
MathSciNet
MATH
Google Scholar
G. Davis, S. Mallat, M. Avellaneda, Adaptive greedy approximations. Constr. Approx. 13(1), 57–98 (1997)
MathSciNet
MATH
Google Scholar
D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
MathSciNet
MATH
Google Scholar
D.L. Donoho, M. Elad, V. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006)
MathSciNet
MATH
Google Scholar
M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, Berlin, 2010)
MATH
Google Scholar
Y.C. Eldar, G. Kutyniok, Compressed Sensing: Theory and Applications (Cambridge University Press, Cambridge, 2012)
Google Scholar
J. Ender, On compressive sensing applied to radar. Signal Process. 90(5), 1402–1414 (2010)
MATH
Google Scholar
N. Eslahi, A. Aghagolzadeh, Compressive sensing image restoration using adaptive curvelet thresholding and nonlocal sparse regularization. IEEE Trans. Image Process. 25(7), 3126–3140 (2016)
MathSciNet
Google Scholar
M.A. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)
Google Scholar
P. Flandrin, P. Borgnat, Time-frequency energy distributions meet compressed sensing. IEEE Trans. Signal Process. 58(6), 2974–2982 (2010)
MathSciNet
MATH
Google Scholar
M. Fornsaier, H. Rauhut, Iterative thresholding algorithms. Appl. Comput. Harmon. Anal. 25(2), 187–208 (2008)
MathSciNet
MATH
Google Scholar
M.A. Hadi, S. Alshebeili, K. Jamil, F.E. Abd El-Samie, Compressive sensing applied to radar systems: an overview. Signal Image Video Process. 9, 25–39 (2015)
Google Scholar
G. Hua, Y. Hiang, G. Bi, When compressive sensing meets data hiding. IEEE Signal Process. Lett. 23(4), 473–477 (2016)
Google Scholar
S. Ji, Y. Xue, L. Carin, Bayesian compressive sensing. IEEE Trans. Signal Process. 56(6), 2346–2356 (2008)
MathSciNet
MATH
Google Scholar
P. Lander, E.J. Berbari, Principles and signal processing techniques of the high-resolution electrocardiogram. Prog. Cardiovasc. Dis. 35(3), 169–188 (1992)
Google Scholar
C. Li, G. Zhao, W. Zhang, Q. Qiu, H. Sun, ISAR imaging by two-dimensional convex optimization-based compressive sensing. IEEE Sens. J. 16(19), 7088–7093 (2016)
Google Scholar
X. Li, G. Bi, Time-frequency representation reconstruction based on the compressive sensing, in 9th IEEE Conference on Industrial Electronics and Applications (Hangzhou, 2014), pp. 1158–1162
X. Liao, K. Li, J. Yin, Separable data hiding in encrypted image based on compressive sensing and discrete Fourier transform. Multimed. Tools Appl. 76, 1–15 (2016)
Google Scholar
S. Liu, Y.D. Zhang, T. Shan, Detection of weak astronomical signals with frequency-hopping interference suppression. Digit. Signal Process. 72, 1–8 (2018)
MathSciNet
Google Scholar
S. Liu, Y.D. Zhang, T. Shan, S. Qin, M.G. Amin, Structure-aware Bayesian compressive sensing for frequency-hopping spectrum estimation, in Proceedings of SPIE 9857, Compressive Sensing V: From Diverse Modalities to Big Data Analytics (2016), p. 98570N
S. Liu, Y.D. Zhang, T. Shan, R. Tao, Structure-aware Bayesian compressive sensing for frequency-hopping spectrum estimation with missing observations. IEEE Trans. Signal Process. 66(8), 2153–2166 (2018)
MathSciNet
Google Scholar
S. Liu, J.B. Jia, Y.J. Yang, Image reconstruction algorithm for electrical impedance tomography based on block sparse Bayesian learning, in Proceedings of IEEE International Conference on Imaging Systems and Techniques (IST) (Beijing, China, Oct. 18–20, 2017)
Y. Liu, M. De Vos, S. Van Huffel, Compressed sensing of multichannel EEG signals: the simultaneous cosparsity and low-rank optimization. IEEE Trans. Biomed. Eng. 62(8), 2055–2061 (2015)
Google Scholar
W. Lu, N. Vaswani, Regularized modified BPDN for noisy sparse reconstruction with partial erroneous support and signal value knowledge. IEEE Trans. Signal Process. 60(1), 182–196 (2012)
MathSciNet
MATH
Google Scholar
S. Luo, P. Johnston, A review of electrocardiogram filtering. J. Electrocardiol. 43(6), 486–496 (2010)
Google Scholar
X. Lv, G. Bi, C. Wan, The group lasso for stable recovery of block-sparse signal representations. IEEE Trans. Signal Process. 59(4), 1371–1382 (2011)
MathSciNet
MATH
Google Scholar
S. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)
MATH
Google Scholar
J.B. Martens, The Hermite transform—theory. IEEE Trans. Acoust. Speech Signal Process. 38(9), 1595–1606 (1990)
MATH
Google Scholar
S.A. Martucci, Symmetric convolution and the discrete sine and cosine transforms. IEEE Trans. Signal Process. 42(5), 1038–1051 (1994)
Google Scholar
J. Music, T. Marasovic, V. Papic, I. Orović, S. Stanković, Performance of compressive sensing image reconstruction for search and rescue. IEEE Geosci. Remote Sens. Lett. 13(11), 1739–1743 (2016)
Google Scholar
J. Music, I. Orović, T. Marasovic, V. Papic, S. Stanković, Gradient compressive sensing for image data reduction in UAV based search and rescue in the wild. Math. Probl. Eng. 2016, 6827414 (2016)
Google Scholar
D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from noisy samples. Appl. Comput. Harmon. Anal. (2008). https://doi.org/10.1016/j.acha.2008.07.002
MATH
Google Scholar
D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. ACM Technical Report, 2008-01 (California Institute of Technology, Pasadena, 2008)
D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Commun. ACM 53(12), 93–100 (2010)
MATH
Google Scholar
B. Ophir, M. Lustig, M. Elad, Multi-scale dictionary learning using wavelets. IEEE J. Sel. Top. Signal Process. 5(5), 1014–1024 (2011)
Google Scholar
I. Orović, V. Papic, C. Ioana, X. Li, S. Stanković, Compressive sensing in signal processing: algorithms and transform domain formulations. Math. Probl. Eng. 2016, 1 (2016)
MathSciNet
MATH
Google Scholar
I. Orović, S. Stanković, Improved higher order robust distributions based on compressive sensing reconstruction. IET Signal Process. 8(7), 738–748 (2014)
Google Scholar
I. Orović, S. Stanković, T. Chau, C.M. Steele, E. Sejdic, Time-frequency analysis and Hermite projection method applied to swallowing accelerometry signals. EURASIP J. Adv. Signal Process. 2010, p 7. Article ID 323125 (2010)
I. Orović, S. Stanković, T. Thayaparan, Time-frequency based instantaneous frequency estimation of sparse signals from an incomplete set of samples. IET Signal Process. Spec. Issue Compressive Sens. Robust Transforms 8(3), 239–245 (2014)
Google Scholar
C. Ozdemir, Inverse Synthetic Aperture Radar Imaging with MATLAB Algorithms (Wiley, Hoboken, 2012)
Google Scholar
M. Panic, J. Aelterman, V.S. Crnojevic, A. Pizurica, Compressed sensing in MRI with a Markov random field prior for spatial clustering of subband coefficients, in Proceedings of the EUSIPCO (2016), pp. 562–566
V.M. Patel, R. Chellappa, Sparse Representations and Compressive Sensing for Imaging and Vision (Springer, Berlin, 2013)
MATH
Google Scholar
G. Pope, Compressive sensing: a summary of reconstruction algorithms. Eidgenossische Technische Hochschule, Zurich, Switzerland (2008), http://e-collection.library.ethz.ch/eserv/eth:41464/eth-41464-01.pdf. Aug 2008
L.C. Potter, E. Ertin, J.T. Parker, M. Cetin, Sparsity and compressed sensing in radar imaging. Proc. IEEE 98(6), 1006–1020 (2010)
Google Scholar
S. Qaisar, R.M. Bilal, W. Iqbal, M. Naureen, S. Lee, Compressive sensing: from theory to applications, a survey. J. Commun. Netw. 15(5), 443–456 (2013)
Google Scholar
R. Rubinstein, A.M. Bruckstein, M. Elad, Dictionaries for sparse representation modeling. Proc. IEEE 98(6), 1045–1057 (2010)
Google Scholar
R. Sameni, G.D. Clifford, A review of fetal ECG signal processing issues and promising directions. Open Pacing Electrophysiol. Therapy J. 3, 4–20 (2010)
Google Scholar
A. Sandryhaila, S. Saba, M. Puschel, J. Kovacevic, Efficient compression of QRS complexes using Hermite expansion. IEEE Trans. Signal Process. 60(2), 947–955 (2012)
MathSciNet
MATH
Google Scholar
A. Sandryhaila, J. Kovacevic, M. Puschel, Compression of QRS complexes using Hermite expansion, in IEEE International Conference on Acoustic, Speech and Signal Process, ICASSP (Prague, 2011), pp. 581–584
E. Sejdic, Time-frequency compressive sensing, in Frequency Signal Analysis and Processing, ed. B. Boashash (Academic Press, 2015), pp. 424–429
I. Stanković, C. Ioana, M. Daković, On the reconstruction of nonsparse time-frequency signals with sparsity constraint from a reduced set of samples. Signal Process. 142, 480–484 (2018)
Google Scholar
I. Stanković, I. Orović, M. Daković, S. Stanković, Denoising of sparse images in impulsive disturbance environment. Multimed. Tools Appl. (2017). https://doi.org/10.1007/s11042-017-4502-7
Google Scholar
L. Stanković, Digital Signal Processing with Applications: Adaptive Systems, Time-Frequency Analaysis, Sparse Signal Processing (CreateSpace Independent Publishing Platform, North Charlestone, 2015)
Google Scholar
L. Stanković, A measure of some time-frequency distributions concentration. Signal Process. 81, 621–631 (2001)
MATH
Google Scholar
L. Stanković, On the ISAR image analysis and recovery with unavailable or heavily corrupted data. IEEE Trans. Aerosp. Electron. Syst. 51(3), 2093–2106 (2015)
Google Scholar
L. Stanković, M. Brajovic, Analysis of the reconstruction of sparse signals in the DCT domain applied to audio signals. IEEE/ACM Trans. Audio Speech Lang. Process. 26(7), 1216–1231 (2018)
Google Scholar
L. Stanković, M. Daković, On the uniqueness of the sparse signals reconstruction based on the missing samples variation analysis. Math. Probl. Eng. 2015, p 14 (2015). Article ID 629759. https://doi.org/10.1155/2015/629759
L. Stanković, M. Daković, I. Stanković, S. Vujovic, On the errors in randomly sampled nonsparse signals reconstructed with a sparsity assumption. IEEE Geosci. Remote Sens. Lett. 14(12), 2453–2456 (2017)
Google Scholar
L. Stanković, M. Daković, S. Stanković, I. Orović, Sparse Signal Processing—Introduction. Wiley Encyclopedia of Electrical and Electronics Engineering (Wiley, Hoboken, 2017)
Google Scholar
L. Stanković, M. Daković, T. Thayaparan, Time-Frequency Signal Analysis with Applications (Artech House, Boston, 2013)
MATH
Google Scholar
L. Stanković, M. Daković, S. Vujovic, Adaptive variable step algorithm for missing samples recovery in sparse signals. IET Signal Process. 8(3), 246–256 (2014)
Google Scholar
L. Stanković, M. Daković, S. Vujovic, Reconstruction of sparse signals in impulsive disturbance environments. Circuits Syst. Signal Process. 36, 1–28 (2016)
MATH
Google Scholar
L. Stanković, I. Orović, S. Stanković, M. Amin, Compressive sensing based separation of non-stationary and stationary signals overlapping in time-frequency. IEEE Trans. Signal Process. 61(18), 4562–4572 (2013)
MathSciNet
MATH
Google Scholar
L. Stanković, I. Stanković, M. Daković, Nonsparsity influence on the ISAR recovery from reduced data. IEEE Trans. Aerosp. Electron. Syst. 52(6), 3065–3070 (2016)
Google Scholar
L. Stanković, S. Stanković, M.G. Amin, Missing samples analysis in signals for applications to l-estimation and compressive sensing. Signal Process. 94, 401–408 (2014)
Google Scholar
L. Stanković, S. Stanković, T. Thayaparan, M. Daković, I. Orović, Separation and reconstruction of the rigid body and micro-Doppler signal in ISAR part II—statistical analysis. IET Radar Sonar Navig. 9(9), 1155–1161 (2015)
Google Scholar
L. Stanković, S. Stanković, T. Thayaparan, M. Daković, I. Orović, Separation and reconstruction of the rigid body and micro-Doppler signal in ISAR part I—theory. IET Radar Sonar Navig. 9(9), 1147–1154 (2015)
Google Scholar
S. Stanković, I. Orović, An approach to 2D signals recovering in compressive sensing context. Circuits Syst. Signal Process. 36(4), 1700–1713 (2017)
Google Scholar
S. Stanković, I. Orović, M. Amin, L-statistics based modification of reconstruction algorithms for compressive sensing in the presence of impulse noise. Signal Process. 93(11), 2927–2931 (2013)
Google Scholar
S. Stanković, I. Orović, A. Krylov, Video frames reconstruction based on time-frequency analysis and Hermite projection method. EURASIP J. Adv. Signal Process. Spec. Issue Time Freq. Anal. Appl. Multimed. Signals, 11. Article ID 970105 (2010)
S. Stanković, I. Orović, E. Sejdic, Multimedia Signals and Systems: Basic and Advanced Algorithms for Signal Processing, 2nd edn. (Springer, Berlin, 2015)
Google Scholar
S. Stanković, I. Orović, L. Stanković, An automated signal reconstruction method based on analysis of compressive sensed signals in noisy environment. Signal Process. 104, 43–50 (2014)
Google Scholar
S. Stanković, I. Orović, L. Stanković, Polynomial Fourier domain as a domain of signal sparsity. Signal Process. 130, 243–253 (2017)
Google Scholar
S. Stanković, L. Stanković, I. Orović, Compressive sensing approach in the Hermite transform domain. Math. Probl. Eng., p 9. Article ID 286590 (2015)
S. Stanković, L. Stanković, I. Orović, A relationship between the robust statistics theory and sparse compressive sensed signals reconstruction. IET Signal Process. 8(3), 223–229 (2014)
Google Scholar
R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–88 (1996)
MathSciNet
MATH
Google Scholar
R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, K. Knight, Sparsity and smoothness via the fused lasso. J. R. Stat. Soc. Ser. B (Stat. Methodol.) 67(1), 91–108 (2005)
MathSciNet
MATH
Google Scholar
M. Tipping, Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)
MathSciNet
MATH
Google Scholar
J.A. Tropp, Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)
MathSciNet
MATH
Google Scholar
J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)
MathSciNet
MATH
Google Scholar
D. Vukobratovic, A. Pizurica, Compressed sensing using sparse adaptive measurements, in Proceedings of the Symposium on Information Theory in the Benelux (SITB ’14) (Eindhoven, The Netherlands, 2014)
Y. Wang, J. Xiang, Q. Mo, S. He, Compressed sparse time-frequency feature representation via compressive sensing and its applications in fault diagnosis. Measurement 68, 70–81 (2015)
Google Scholar
L. Wang, L. Zhao, G. Bi, C. Wan, Hierarchical sparse signal recovery by variational Bayesian inference. IEEE Signal Process. Lett. 21(1), 110–113 (2014)
Google Scholar
L. Zhang, M. Xing, C.W. Qiu, J. Li, Z. Bao, Achieving higher resolution ISAR imaging with limited pulses via compressed sampling. IEEE Geosci. Remote Sens. Lett. 6(3), 567–571 (2009)
Google Scholar
T. Zhang, Sparse recovery with orthogonal matching pursuit under RIP. IEEE Trans. Inf. Theory 57(9), 6215–6221 (2011)
MathSciNet
MATH
Google Scholar
Z. Zhang, T.P. Jung, S. Makeig, B.D. Rao, Compressed sensing of EEG for wireless telemonitoring with low energy consumption and inexpensive hardware. IEEE Trans. Biomed. Eng. 60(1), 221–224 (2013)
Google Scholar
Z. Zhang, B.D. Rao, Sparse signal recovery with temporally correlated source vectors using sparse Bayesian learning. IEEE J. Sel. Top. Signal Process. 5(5), 912–926 (2011)
Google Scholar
Z. Zhang, B.D. Rao, Extension of SBL algorithms for the recovery of block sparse signals with intra-block correlation. IEEE Trans. Signal Process. 61(8), 2009–2015 (2013)
Google Scholar
L. Zhu, E. Liu, J.H. McClellan, Sparse-promoting full-waveform inversion based on online orthonormal dictionary learning. Geophysiscs 82(2), 87–107 (2017)
Google Scholar
Z. Zhu, K. Wahid, P. Babyn, D. Cooper, I. Pratt, Y. Carter, Improved compressed sensing-based algorithm for sparse-view CT image reconstruction. Comput. Math. Methods Med. 2013, 185750 (2013)
MathSciNet
MATH
Google Scholar