Skip to main content
Log in

An Efficient QRS Complex Detection Using Optimally Designed Digital Differentiator

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Heart rate variability (HRV) analysis is considered as a preliminary diagnosis method to check the cardiac health of the human heart. The reliability of the HRV analysis system solely depends on the accuracy of the QRS complex detector. Hence, in this paper, an optimally designed digital differentiator (DD) for precise detection of QRS complex is proposed. The proposed DD is designed by using an efficient evolutionary optimization technique called gases Brownian motion optimization (GBMO) algorithm and is used in the preprocessing stage of the QRS detector. In GBMO algorithm, a balanced trade-off is maintained between both the exploration and the exploitation phases to find the global optimum solution. The electrocardiogram signal is preprocessed by using the proposed DD to generate the feature signals corresponding to the R-peaks only. The detection technique utilizes the principle of Hilbert transform and zeroes crossing detection. The proposed approach is verified against all the first channel records of MIT/BIH arrhythmia database by considering the standard QRS detection performance metrics and produces a sensitivity (Se) of 99.92%, positive predictivity (+P) of 99.92%, detection error rate (DER) of 0.1562%, QRS detection rate of 99.92%, accuracy (Acc) of 99.84%, and F score of 0.9992%. With respect to the standard performance metrics, the proposed QRS detector outperforms all the recently reported QRS detection techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Abdechiri, M.R. Meybodi, H. Bahrami, Gases Brownian motion optimization: an algorithm for optimization. Appl. Soft Comput. 13(5), 2932–2946 (2013)

    Article  Google Scholar 

  2. V.X. Afonso, W.J. Tompkins, T.Q. Nguyen, S. Luo, ECG beat detection using filter banks. IEEE Trans. Biomed. Eng. 46(2), 192–201 (1999)

    Article  Google Scholar 

  3. K. Arbateni, A. Bennia, Sigmoidal radial basis function ANN for QRS complex detection. Neurocomputing 145(5), 438–450 (2014)

    Article  Google Scholar 

  4. N.M. Arzeno, Z.D. Deng, C.S. Poon, Analysis of first-derivative based QRS detection algorithms. IEEE Trans. Biomed. Eng. 55(2), 478–484 (2008)

    Article  Google Scholar 

  5. D.S. Benitez, P.A. Gaydecki, A. Zaidi, A.P. Fitzpatrick, A new QRS detection algorithm based on the Hilbert transforms. Comput. Cardiol. 27, 379–382 (2000)

    Google Scholar 

  6. M. Benmalek, A. Charef, Digital fractional order operators for R-wave detection in the electrocardiogram signal. IET Signal Proc. 3(5), 381–391 (2008)

    Article  Google Scholar 

  7. F. Bouaziz, D. Boutana, M. Benidir, Multiresolution wavelet-based QRS complex detection algorithm suited to several abnormal morphologies. IET Signal Proc. 8(7), 774–782 (2014)

    Article  Google Scholar 

  8. D. Castells-Rufas, J. Carrabina, Simple and real-time QRS detector with the MaMeMi filter. Biomed. Signal Process. Control 21, 137–145 (2015)

    Article  Google Scholar 

  9. S.W. Chen, H.C. Chen, H.L. Chan, A real-time QRS detection method based on moving-averaging incorporating with wavelet denoising. Comput. Methods Programs Biomed. 82(3), 187–195 (2006)

    Article  Google Scholar 

  10. S. Choi, M. Adnane, G.J. Lee, H. Jang, Z. Jiang, H.K. Park, Development of ECG beat segmentation method by combining low pass filter and irregular R–R interval check-up strategy. Expert Syst. Appl. 37(7), 5208–5218 (2010)

    Article  Google Scholar 

  11. C.J. Deepu, Y. Lian, A joint QRS detection and data compression scheme for wearable sensors. IEEE Trans. Biomed. Eng. 62(1), 165–175 (2015)

    Article  Google Scholar 

  12. A.K. Dohare, V. Kumar, R. Kumar, An efficient new method for the detection of QRS in the electrocardiogram. Comput. Electr. Eng. 40(5), 1717–1730 (2014)

    Article  Google Scholar 

  13. Y. Ferdi, J.P. Herbeuval, A. Charef, B. Boucheham, R wave detection using fractional digital differentiation. ITBM-RBM. 24(5–6), 273–280 (2000)

    Google Scholar 

  14. A.L. Goldberger, L.A.N. Amaral, L. Glass, J.M. Hausdorff, P.C. Ivanov, R.G. Mark, J.E. Mietus, G.B. Moody, C.K. Peng, H.E. Stanley, PhysioBank, PhysioToolkit, and PhysioNet: components of a new research resource for complex physiologic signals. Circulation 101(23), e215–e220 (2000)

    Article  Google Scholar 

  15. P.S. Hamilton, W.J. Tompkins, Quantitative investigation of QRS detection rules using the MIT/BIH arrhythmia database. IEEE Trans. Biomed. Eng. 33(12), 1157–1164 (1986)

    Article  Google Scholar 

  16. S. Jain, M.K. Ahirwal, A. Kumar, V. Bajaj, G.K. Singh, QRS detection using adaptive filters: a comparative study. ISA Trans. 66, 362–375 (2017)

    Article  Google Scholar 

  17. A. Karimipour, M.R. Homaeinezhad, Real-time electrocardiogram P-QRS-T detection-delineation algorithm based on quality-supported analysis of characteristic template. Comput. Biol. Med. 52, 153–165 (2014)

    Article  Google Scholar 

  18. B.U. Kohler, C. Hennig, R. Orglmeister, The principles of software QRS detection. IEEE Eng. Med. Biol. Mag. 21(1), 42–57 (2002)

    Article  Google Scholar 

  19. R. Kumar, A. Kumar, G.K. Singh, Electrocardiogram signal compression using singular coefficient truncation and wavelet coefficient coding. IET Sci. Meas. Technol. 10(4), 266–274 (2016)

    Article  Google Scholar 

  20. C.I. Leong, P.I. Mak, C.P. Lam, C. Dong, M.I. Vai, P.U. Mak, H.S. Pun, F. Wan, R.P. Martins, A 0.83 µW QRS detection processor using quadratic spline wavelet transform for wireless ECG acquisition in 0.35 µm CMOS. IEEE Trans. Biomed. Circuits Syst. 6(6), 586–595 (2012)

    Article  Google Scholar 

  21. C. Li, C. Zheng, C. Tai, Detection of ECG characteristic points using wavelet transform. IEEE Trans. Biomed. Eng. 42(1), 21–28 (1995)

    Article  Google Scholar 

  22. Q. Lin, T. Ran, Z. Siyong, W. Yue, Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Sci. China Ser. F Inf. Sci. 47(2), 184–198 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  23. J.P.V. Madeiro, P.C. Cortez, J.A.L. Marques, C.R.V. Seisdedos, C.R.M.R. Sobrinho, An innovative approach to QRS segmentation based on first-derivative, Hilbert and wavelet transform. Med. Eng. Phys. 34(9), 1236–1246 (2012)

    Article  Google Scholar 

  24. S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal design of wideband digital integrators and differentiators using harmony search algorithm. Int. J. Numer. Model. Electron. Netw. Devices Fields (2016). https://doi.org/10.1002/jnm.2203

    Google Scholar 

  25. S. Mahata, S.K. Saha, R. Kar, D. Mandal, Optimal design of wideband digital integrators and differentiators using hybrid flower pollination algorithm. Soft. Comput. 22(11), 3757–3783 (2018)

    Article  Google Scholar 

  26. M.S. Manikandan, K.P. Soman, A novel method for detecting R-peaks in electrocardiogram (ECG) signal. Biomed. Signal Process. Control 7(2), 118–128 (2012)

    Article  Google Scholar 

  27. J.P. Martínez, R. Almeida, S. Olmos, A.P. Rocha, P. Laguna, A wavelet-based ECG delineator evaluation on standard databases. IEEE Trans. Biomed. Eng. 51(4), 570–581 (2004)

    Article  Google Scholar 

  28. Y.J. Min, H.K. Kim, Y.R. Kang, G.S. Kim, J. Park, S.W. Kim, Design of wavelet-based ECG detector for implantable cardiac pacemakers. IEEE Trans. Biomed. Circuits Syst. 7(4), 426–436 (2013)

    Article  Google Scholar 

  29. S. Mirjalili, A.H. Gandomi, S.Z. Mirjalili, S. Saremi, H. Faris, S.M. Mirjalili, Salp swarm algorithm: a bio-inspired optimizer for engineering design problems. Adv. Eng. Softw. 114, 163–191 (2017)

    Article  Google Scholar 

  30. G.B. Moody, R.G. Mark, The impact of MIT-BIH Arrhythmia database. IEEE Eng. Med. Biol. Mag. 20(3), 45–50 (2001)

    Article  Google Scholar 

  31. K. Mourad, B.R. Fethi, Efficient automatic detection of QRS complexes in ECG signal based on reverse bi-orthogonal wavelet decomposition and nonlinear filtering. Measurement 94, 663–670 (2016)

    Article  Google Scholar 

  32. G. Nallathambi, J.C. Príncipe, Integrate and fire pulse train automaton for QRS detection. IEEE Trans. Biomed. Eng. 61(2), 317–326 (2014)

    Article  Google Scholar 

  33. J. Pan, W.J. Tompkins, A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng. 32(3), 230–236 (1985)

    Article  Google Scholar 

  34. D. Pandit, L. Zhang, C. Liu, S. Chattopadhyay, N. Aslam, C.P. Lim, A lightweight QRS detector for single lead ECG signals using a max-min difference algorithm. Comput. Methods Programs Biomed. 144, 61–75 (2017)

    Article  Google Scholar 

  35. D. Panigrahy, M. Rakshit, P.K. Sahu, FPGA implementation of the heart rate monitoring system. J. Med. Syst. (2016). https://doi.org/10.1007/s10916-015-0410-4

    Google Scholar 

  36. P. Phukpattaranont, QRS detection algorithm based on the quadratic filter. Expert Syst. Appl. 42(11), 4867–4877 (2015)

    Article  Google Scholar 

  37. R. Poli, S. Cagnoni, G. Valli, Genetic design of optimum linear and nonlinear QRS detectors. IEEE Trans. Biomed. Eng. 42(11), 1137–1141 (1995)

    Article  Google Scholar 

  38. N. Ravanshad, H.R. Dehsorkh, R. Lotfi, Y. Lian, A level-crossing based QRS-detection algorithm for wearable ECG sensors. IEEE J. Biomed. Health Inform. 18(1), 183–192 (2014)

    Article  Google Scholar 

  39. P. Sabherwal, M. Agrawal, L. Singh, Automatic detection of the R peaks in single-lead ECG signal. Circuits Syst. Signal Process. 36(11), 4637–4652 (2017)

    Article  Google Scholar 

  40. S.K. Saha, S.P. Ghoshal, R. Kar, D. Mandal, Cat swarm optimization algorithm for optimal linear phase FIR filter design. ISA Trans. 52(6), 781–794 (2013)

    Article  Google Scholar 

  41. S.K. Saha, R. Kar, D. Mandal, S.P. Ghoshal, Seeker optimization algorithm: application to the design of the linear phase finite impulse response filter. IET Signal Proc. 6(8), 763–771 (2012)

    Article  Google Scholar 

  42. S.K. Saha, R. Kar, D. Mandal, S.P. Ghoshal, Gravitation search algorithm: application to the optimal IIR filter design. J. King Saud Univ. Eng. Sci. 26(1), 69–81 (2014)

    Google Scholar 

  43. S. Sahoo, B. Kanungo, S. Behera, S. Sabut, Multiresolution wavelet transform based feature extraction and ECG classification to detect cardiac abnormalities. Measurement 108, 55–66 (2017)

    Article  Google Scholar 

  44. T. Sharma, K.K. Sharma, QRS complex detection in ECG signals using locally adaptive weighted total variation denoising. Comput. Biol. Med. 87, 187–199 (2017)

    Article  Google Scholar 

  45. Z.-E.H. Slimane, A. Nait-AlI, QRS complex detection using empirical mode decomposition. Digit. Signal Proc. 20(4), 1221–1228 (2010)

    Article  Google Scholar 

  46. D.L. Vacchia, L. Camponovo, D. Ferrari, Robust heart rate variability analysis by generalized entropy minimization. Comput. Stat. Data Anal. 82, 137–151 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  47. R. Vuerinckx, Y. Rolain, J. Schoukens, R. Pinteion, Design of stable IIR filters in the complex domain by automatic delay selection. IEEE Trans. Signal Process. 44(9), 2339–2344 (1996)

    Article  Google Scholar 

  48. D. Wei, Image super-resolution reconstruction using the high-order derivative interpolation associated with fractional filter functions. IET Signal Proc. 10(9), 1052–1061 (2016)

    Article  Google Scholar 

  49. D. Wei, Y.M. Li, Generalized sampling expansions with multiple sampling rates for lowpass and bandpass signals in the fractional Fourier transfer domain. IEEE Trans. Signal Process. 64(18), 4861–4874 (2016)

    Article  MathSciNet  Google Scholar 

  50. Z. Wei, W. Xueyun, Z.J. Jian, L. Hongxing, Fetal heartbeat detection by Hilbert transform and non-linear state-space projections. IET Sci. Meas. Technol. 9(1), 85–92 (2015)

    Article  Google Scholar 

  51. Q. Xue, Y.H. Hu, W.J. Tompkins, Neural-network based adaptive matched filtering for QRS detection. IEEE Trans. Biomed. Eng. 39(4), 317–329 (1992)

    Article  Google Scholar 

  52. S. Yazdani, J.M. Vesin, Extraction of QRS fiducial points from the ECG using adaptive mathematical morphology. Digit. Signal Proc. 56, 100–109 (2016)

    Article  MathSciNet  Google Scholar 

  53. Y.C. Yeh, W.J. Wang, QRS complexes detection for ECG signal: the difference operation method. Comput. Methods Programs Biomed. 91(3), 245–254 (2008)

    Article  Google Scholar 

  54. M. Yochum, C. Renaud, S. Jacquir, Automatic detection of P, QRS and T patterns in 12 leads ECG signal based on CWT. Biomed. Signal Process. Control 25, 46–52 (2016)

    Article  Google Scholar 

  55. A. Zamani, S.M. Barakati, S. Yousofi-Darmian, Design of a fractional order PID controller using GBMO algorithm for load-frequency control with governor saturation consideration. ISA Trans. 64, 56–66 (2016)

    Article  Google Scholar 

  56. F. Zhang, Y. Lian, QRS detection based on multiscale mathematical morphology for wearable ECG devices in body area networks. IEEE Trans. Biomed. Circuits Syst. 3(4), 220–228 (2009)

    Article  Google Scholar 

  57. Z. Zidelmal, A. Amirou, M. Adnane, A. Belouchrani, QRS detection based on wavelet coefficients. Comput. Methods Programs Biomed. 107(3), 490–496 (2012)

    Article  Google Scholar 

  58. Z. Zidelmal, A. Amirou, D. Ould-Abdeslam, A. Moukadem, A. Dieterlen, QRS detection using s-transform and Shannon energy. Comput. Methods Programs Biomed. 116(1), 1–9 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This project is financially supported by Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India (Grant No: EEQ/2016/000215).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandan Nayak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nayak, C., Saha, S.K., Kar, R. et al. An Efficient QRS Complex Detection Using Optimally Designed Digital Differentiator. Circuits Syst Signal Process 38, 716–749 (2019). https://doi.org/10.1007/s00034-018-0880-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0880-y

Keywords

Navigation