Advertisement

Robust Adaptive Wideband Beamforming Against Direction and Sensor Location Errors

  • Yaqi Liu
  • Chengcheng Liu
  • Yongjun Zhao
  • Jiandong Zhu
Article
  • 1 Downloads

Abstract

The performance of the existing robust beamformers can be still degraded by the bias between the nominal steering vector and the actual one. In this paper, a novel robust wideband beamformer based on the time–frequency distributions is proposed, which can estimate the steering vector accurately even in the presence of direction and sensor location errors. Firstly, it develops an approach for wideband signals to select the single-source auto-source time–frequency (TF) points of the source signals. Then these TF points are utilized to obtain the steering vectors without using the perturbed array manifold and direction information. Finally, a higher output signal-to-interference-plus-noise ratio (SINR) is achieved for the minor bias between the estimated steering vectors and the actual ones. Simulation results demonstrate that the proposed algorithm outperforms other conventional robust beamforming approaches and can achieve high output SINR close to the ideal beamformer over a broad range of direction and sensor location errors.

Keywords

Robust wideband beamformer Direction of arrival error Sensor location error Spatial time–frequency distribution matrix 

Notes

Funding

Funding was provided by National Natural Science Foundation of China (Grant No. 61401469).

References

  1. 1.
    A. Aïssa-El-Bey, N. Linh-Trung, K. Abed-Meraim, A. Belouchrani, Y. Grenier, Underdetermined blind separation of non-disjoint sources in the time-frequency domain. IEEE Trans. Signal Process. 55(3), 897–907 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Aïssa-El-Bey, K. Abed-Meraim, Y. Grenier, Blind separation of underdetermined convolutive mixtures using their time–frequency representation. IEEE Trans. Signal Process. 15(5), 1540–1550 (2007)MATHGoogle Scholar
  3. 3.
    Y. Bucris, I. Cohen, M.A. Doron, Bayesian focusing for coherent wideband beamforming. IEEE Trans. Audio Speech Lang. Process. 20(4), 1282–1296 (2012)CrossRefGoogle Scholar
  4. 4.
    K.M. Buckley, L.J. Griffith, An adaptive generalized sidelobe canceller with derivative constraints. IEEE Trans. Antennas Propag. 34(3), 311–319 (1986)CrossRefGoogle Scholar
  5. 5.
    A. Belouchrani, M.G. Amin, Blind source separation based on time-frequency signal representations. IEEE Trans. Signal Process. 46(11), 2888–2897 (1998)CrossRefGoogle Scholar
  6. 6.
    B.D. Carlson, Covariance matrix estimation errors and diagonal loading in adaptive arrays. IEEE Trans. Aerosp. Electron. Syst. 24, 397–401 (1988)CrossRefGoogle Scholar
  7. 7.
    M.H. Er, A. Cantoni, Derivative constraints for broad-band element space antenna array processors. IEEE Trans. Acoust. Speech Signal Process. 31(6), 1378–1393 (1983)CrossRefGoogle Scholar
  8. 8.
    R. Ebrahimi, S.R. Seydnejad, Elimination of pre-steering delays in space–time broadband beamforming using frequency domain constrains. IEEE Commun. Lett. 17(4), 769–772 (2013)CrossRefGoogle Scholar
  9. 9.
    O.L. Frost, An algorithm for linearly constrained adaptive array processing. Proc. IEEE 60(8), 926–935 (1972)CrossRefGoogle Scholar
  10. 10.
    K.C. Huarng, C.C. Yeh, Performance analysis of derivative constraint adaptive arrays with pointing errors. IEEE Trans. Antennas Propag. 40, 975–981 (1992)CrossRefGoogle Scholar
  11. 11.
    P. Hu, M.W. Shen, C. Liang, D. Wu, D.Y. Zhu, An efficient broadband beamforming algorithm based on frequency-space cascade processing. Circuits Syst. Signal Process. 37, 432–443 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    W. Liu, R.J. Langley, An adaptive wideband beamforming structure with combined subband decomposition. IEEE Trans. Antennas Propag. 57(7), 2204–2207 (2009)CrossRefGoogle Scholar
  13. 13.
    N. Lin, W. Liu, R.J. Langley, Performance analysis of an adaptive broadband beamformer based on a two-element linear array with sensor delay-line processing. Signal Process. 90, 269–281 (2010)CrossRefMATHGoogle Scholar
  14. 14.
    W. Liu, S. Weiss, Wideband Beamforming: Concepts and Techniques (Wiley, Chichester, 2010)CrossRefGoogle Scholar
  15. 15.
    N. Linh-Trung, A. Belouchrani, K. Abed-Meraim, B. Boashash, Separating more sources than sensors using time-frequency distributions. EURASIP J. Appl. Signal Process. 17, 2828–2847 (2005)MATHGoogle Scholar
  16. 16.
    Y.H. Luo, W.W. Wang, J.A. Chambers, S. Lambotharan, I. Proudler, Exploitation of source nonstationarity in underdetermined blind source separation with advanced clustering techniques. IEEE Trans. Signal Process. 54(6), 2198–2212 (2006)CrossRefMATHGoogle Scholar
  17. 17.
    D.Z. Peng, Y. Xiang, Underdetermined blind source separation based on relaxed sparsity condition of sources. IEEE Trans. Signal Process. 57(2), 809–814 (2009)MathSciNetCrossRefGoogle Scholar
  18. 18.
    V.G. Reju, S.N. Koh, I.Y. Soon, Underdetermined convolutive blind source separation via time–frequency masking. IEEE Trans. Audio Speech Lang. Process. 18(1), 101–116 (2010)CrossRefGoogle Scholar
  19. 19.
    I. Thng, A. Cantoni, Y.H. Leung, Constraints for maximally flat optimum broadband antenna arrays. IEEE Trans. Signal Process. 43(6), 1334–1347 (1995)CrossRefGoogle Scholar
  20. 20.
    Z. Tian, K.L. Bell, H.L.V. Trees, A recursive least squares implementation for LCMP beamforming under quadratic constraint. IEEE Trans. Signal Process. 49, 1138–1145 (2001)CrossRefGoogle Scholar
  21. 21.
    E.W. Vook, R.T. Compton, Bandwidth performance of linear adaptive arrays with tapped delay-line processing. IEEE Trans. Aerosp. Electron. Syst. 28(3), 901–908 (1992)CrossRefGoogle Scholar
  22. 22.
    M. Zhang, M.H. Er, Robust adaptive beamforming for broadband arrays. Circuits Syt Signal Process. 16(2), 207–216 (1997)CrossRefMATHGoogle Scholar
  23. 23.
    S. Zhang, I. Thng, Robust presteering derivative constraints for broadband antenna arrays. IEEE Trans. Signal Process. 50, 1–10 (2002)CrossRefGoogle Scholar
  24. 24.
    Y. Zhao, W. Liu, R.J. Langley, Adaptive wideband beamforming with frequency invariance constraints. IEEE Trans. Antennas Propag. 59(4), 1175–1184 (2011)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    Y. Zhao, W. Liu, Robust wideband beamforming with frequency response variation constraint subject to arbitrary norm-bounded error. IEEE Trans. Antennas Propag. 60(5), 2566–2571 (2012)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Digital Switching System Engineering and Technological Research Center (NDSC)ZhengzhouChina
  2. 2.Electronic Equipment Test CenterLuoyangChina

Personalised recommendations