Cauchy Distribution Function-Penalized LMS for Sparse System Identification

Abstract

It is well known that the zero-attracting least mean square (ZA-LMS) algorithm and reweighted zero-attracting LMS (RZA-LMS) algorithm outperform the standard LMS algorithm in sparse systems. However, because the ZA-LMS algorithm does not distinguish the size of the tap coefficients, its performance in low-sparse or non-sparse systems declines rapidly. Although RZA-LMS selectively attracts taps with small magnitudes, there is extra attraction to large tap coefficients, which can increase the steady-state mean square error (MSE). In this paper, a Cauchy distribution function-penalized LMS (C-LMS) algorithm is proposed. The proposed algorithm changed the penalty term of the cost function into Cauchy distribution function, which can decrease the attraction to large tap coefficients and enhances the force to the small tap coefficients. The simulation results indicate that the C-LMS can achieve lower steady-state MSE than other algorithms in sparse systems and demonstrates similar performance to the conventional LMS algorithm in non-sparse system.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    R. Baraniuk, A lecture on compressive sensing. IEEE Signal Process. Mag. 24, 118–120 (2007)

    Article  Google Scholar 

  2. 2.

    E.J. Candes, M. Wakin, S. Boyd, Enhancing sparsity by reweighted l 1 minimization. J. Fourier Anal. Appl. 14(5–6), 877–905 (2008)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Y. Chen, Y. Gu, A.O. Hero, Sparse LMS for system identification, in IEEE International Conference on Acoustics, Speech & Signal Processing (2009), pp. 3125–3128

  4. 4.

    H.B. Chen, Y.S. Xiao, F. Ding, Hierarchical gradient parameter estimation algorithm for Hammerstein nonlinear systems using the key term separation principle. Appl. Math. Comput. 247, 1202–1210 (2014)

    MathSciNet  MATH  Google Scholar 

  5. 5.

    J.L. Ding, Recursive and iterative least squares parameter estimation algorithms for multiple-input-output-error systems with autoregressive noise. Circuits Syst. Signal Process. 37(5), 1884–1906 (2018)

    MathSciNet  Article  Google Scholar 

  6. 6.

    F. Ding, X. Wang, Hierarchical stochastic gradient algorithm and its performance analysis for a class of bilinear-in-parameter systems. Circuits Syst. Signal Process. 36(4), 1393–1405 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    F. Ding, X.H. Wang, Q.J. Chen, Y.S. Xiao, Recursive least squares parameter estimation for a class of output nonlinear systems based on the model decomposition. Circuits Syst. Signal Process. 35(9), 3323–3338 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    F. Ding, L. Xu, F.E. Alsaadi, T. Hayat, Iterative parameter identification for pseudo-linear systems with ARMA noise using the filtering technique. IET Control Theory Appl. (2018). https://doi.org/10.1049/iet-cta.2017.0821

    MathSciNet  Google Scholar 

  9. 9.

    F. Ding, H.B. Chen, L. Xu et al., A hierarchical least squares identification algorithm for Hammerstein nonlinear systems using the key term separation. J. Franklin Inst. 355(6), 3737–3752 (2018)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    B. Farhang-Boroujeny, Adaptive Filters: Theory and Applications, 2nd edn. (Wiley, Chichester, 2013)

    Google Scholar 

  11. 11.

    P.C. Gong, W.Q. Wang, F.C. Li, H.C. So, Sparsity-aware transmit beamspace design for FDA-MIMO radar. Sig. Process. 144, 99–103 (2018)

    Article  Google Scholar 

  12. 12.

    Y. Gu, J. Jin, S. Mei, l 0 norm constraint LMS algorithm for sparse system identification. IEEE Signal Process. Lett. 16(9), 774–777 (2009)

    Article  Google Scholar 

  13. 13.

    M.H. Li, X.M. Liu, The least squares based iterative algorithms for parameter estimation of a bilinear system with autoregressive noise using the data filtering technique. Sig. Process. 147, 23–34 (2018)

    Article  Google Scholar 

  14. 14.

    C.G. Li, P. Liu, C. Zou et al., Spectral-efficient cellular communications with coexistent one- and two-hop transmissions. IEEE Trans. Veh. Technol. 65(8), 6765–6772 (2016)

    Article  Google Scholar 

  15. 15.

    W.L. Li, Y.M. Jia, J.P. Du, Distributed filtering for discrete-time linear systems with fading measurements and time-correlated noise. Digit. Signal Proc. 60, 211–219 (2017)

    Article  Google Scholar 

  16. 16.

    M.H. Li, X.M. Liu, F. Ding, The maximum likelihood least squares based iterative estimation algorithm for bilinear systems with autoregressive noise. J. Franklin Inst. 354(12), 4861–4881 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    M.H. Li, X.M. Liu, F. Ding, The gradient based iterative estimation algorithms for bilinear systems with autoregressive noise. Circuits Syst. Signal Process. 36(11), 4541–4568 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    M.H. Li, X.M. Liu, F. Ding, Least-squares-based iterative and gradient-based iterative estimation algorithms for bilinear systems. Nonlinear Dyn. 89(1), 1–15 (2017)

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    C.G. Li, K. Song, L.X. Yang, Low computational complexity design over sparse channel estimator in underwater acoustic OFDM communication system. IET Commun. 11(7), 1143–1151 (2017)

    Article  Google Scholar 

  20. 20.

    J. Maheshwari, N.V. George, Polynomial sparse adaptive algorithm. Electron. Lett. 52(25), 2063–2065 (2016)

    Article  Google Scholar 

  21. 21.

    C. Paleologu, J. Benesty, S. Ciochina, Sparse Adaptive Filters for Echo Cancellation (Morgan & Claypool, San Rafael, 2010)

    Google Scholar 

  22. 22.

    Z.H. Rao, C.Y. Zeng, M.H. Wu et al., Research on a handwritten character recognition algorithm based on an extended nonlinear kernel residual network. KSII Trans. Internet Inf. Syst. 12(1), 413–435 (2018)

    Google Scholar 

  23. 23.

    G. Su, J. Jin, Y. Gu, J. Wang, Performance analysis of l 0 norm constraint least mean square algorithm. IEEE Trans. Signal Process. 60(5), 2223–2235 (2012)

    MathSciNet  Article  MATH  Google Scholar 

  24. 24.

    R. Tibshirani, Regression shrinkage and selection via the LASSO. J. Roy. Stat. Soc.: Ser. B (Methodol.) 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  25. 25.

    L.R. Vega, H. Rey, A Rapid Introduction to Adaptive Filtering (Springer, New York, 2013)

    Google Scholar 

  26. 26.

    Y. Wang, F. Ding, Recursive parameter estimation algorithms and convergence for a class of nonlinear systems with colored noise. Circuits Syst. Signal Process. 35(10), 3461–3481 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  27. 27.

    Y. Wang, F. Ding, L. Xu, Some new results of designing an IIR filter with colored noise for signal processing. Digit. Signal Proc. 72, 44–58 (2018)

    MathSciNet  Article  Google Scholar 

  28. 28.

    L. Xu, F. Ding, Recursive least squares and multi-innovation stochastic gradient parameter estimation methods for signal modeling. Circuits Syst. Signal Process. 36(4), 1735–1753 (2017)

    Article  MATH  Google Scholar 

  29. 29.

    Z. Yang, Y.R. Zheng, S.L. Grant, Proportionate affine projection sign algorithms for network echo cancellation. IEEE Trans. Audio Speech Lang. Process. 19(8), 2273–2284 (2011)

    Article  Google Scholar 

  30. 30.

    X. Zhang, K. Song, C.G. Li, L.X. Yang, Parameter estimation for multi-scale multi-lag underwater acoustic channels based on modified particle swarm optimization algorithm. IEEE Access 5(99), 4808–4820 (2017)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to ShuMing He.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, S., Lin, Y. Cauchy Distribution Function-Penalized LMS for Sparse System Identification. Circuits Syst Signal Process 38, 470–480 (2019). https://doi.org/10.1007/s00034-018-0870-0

Download citation

Keywords

  • Cauchy distribution function
  • Sparse systems
  • Steady-state mean square error
  • System identification