Skip to main content
Log in

Neural Networks for Compressed Sensing Based on Information Geometry

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Neural networks that are embedded with prior knowledge of the distribution of the original signal in applications of compressed sensing have attracted increasing attention. However, the maximal probability of the desired output by a neural network cannot guarantee that the statistical distribution of the recovered signal is consistent with the statistical distribution of the original signal. In this paper, we combine neural networks with information geometry to study the recovery of sparse signals that satisfy a certain distribution. We construct the geodesic distance between the distribution of the original signal and distribution of the recovered signal as the input for the neural network. Experiments show that the proposed method has a better reconstruction quality compared with existing algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. S. Amari, Natural gradient works efficiently in learning. Neural Comput. 10(2), 251–276 (1998)

    Article  Google Scholar 

  2. S. Amari, Information geometry on hierarchy of probability distributions. IEEE Trans. Inf. Theory 47(5), 1701–1711 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. S.I. Amari, Information geometry and its applications. J. Math. Psychol. 49(1), 101–102 (2005)

    Google Scholar 

  4. S. Amari, Information geometry in optimization, machine learning and statistical inference. Front. Electr. Electron. Eng. China 5(3), 241–260 (2010)

    Article  Google Scholar 

  5. S. Amari, M. Kawanabe, Information geometry of estimating functions in semi-parametric statistical models. Bernoulli 3(1), 29–54 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  6. T. Ardeshiri, K. Granstrom, E. Ozkan, U. Orguner, Greedy reduction algorithms for mixtures of exponential family. IEEE Signal Process. Lett. 22(6), 676–680 (2015)

    Article  Google Scholar 

  7. K.A. Arwini, C.T.J. Dodson, A.J. Doig, W.W. Sampson, J. Scharcanski, S. Felipussi, J.M. Morel, F. Takens, B. Teissier, Information Geometry: Near Randomness and Near Independence (Springer, Berlin, 2008)

    Book  Google Scholar 

  8. R.G. Baraniuk, V. Cevher, M.F. Duarte, C. Hegde, Model-based compressive sensing. IEEE Trans. Inf. Theory 56(4), 1982–2001 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. D. Baron, S. Sarvotham, R.G. Baraniuk, Bayesian compressive sensing via belief propagation. IEEE Signal Process. 58(3), 269–280 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. T. Blumensath, M.E. Davies, Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. A. Buecher, J. Segers, Maximum likelihood estimation for the Frechet distribution based on block maxima extracted from a time series. Bernoulli 24(2), 1427–1462 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  12. H.Q. Bui, C.N.H. La, M.N. Da, A fast tree-based algorithm for compressed sensing with sparse-tree prior. Signal Process. 108(10), 628–641 (2015)

    Article  Google Scholar 

  13. L.L. Campbell, The relation between information theory and the differential, geometry approach to statistics. Inf. Sci. 35(3), 199–210 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  14. E.J. Candes, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. E.J. Candes, T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. E.J. Candes, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  17. E.J. Candes, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. E.J. Candès, J.K. Romberg, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  19. A.Y. Carmi, L. Mihaylova, S.J. Godsill, Compressed Sensing and Sparse Filtering (Springer, Berlin, 2014)

    Book  MATH  Google Scholar 

  20. S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  21. I. Daubechies, M. Defrise, D. Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(2), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  22. S. Dineen, A.M. Society, Probability theory in finance: a mathematical guide to the Black–Scholes formula. Am. Math. Soc. 10(8), 164–187 (2011)

    Google Scholar 

  23. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(12), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. D.L. Donoho, Y. Tsaig, I. Drori, J.L. Starck, Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans. Inf. Theory 58(22), 1094–1121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. T.V. Duong, D.Q. Phung, H.H. Bui, S. Venkatesh, Human behavior recognition with generic exponential family duration modeling in the hidden semi-Markov model, in International Conference on Pattern Recognition (2006), pp. 202–208

  26. O.D. Escoda, L. Granai, P. Vandergheynst, On the use of a priori information for sparse signal approximations. IEEE Trans. Signal Process. 54(9), 3468–3482 (2006)

    Article  MATH  Google Scholar 

  27. M.A.T. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)

    Article  Google Scholar 

  28. A. Flinth, Optimal choice of weights for sparse recovery with prior information. IEEE Trans. Inf. Theory 62(7), 4276–4284 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  29. B.R. Frieden, Science from Fisher Information: A Unification (Cambridge University Press, Cambridge, 2004)

    Book  MATH  Google Scholar 

  30. M.P. Friedlander, H. Mansour, R. Saab, O. Yilmaz, Recovering compressively sampled signals using partial support information. IEEE Trans. Inf. Theory 58(2), 1122–1134 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. R. Garg, R. Khandekar, Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property, in Proceedings of the 26th International Conference On Machine Learning (2009), pp. 337–344

  32. A. Gilbert, S. Guha, P. Indyk, S. Muthukrishnan, M. Strauss, Near-optimal sparse Fourier representations via sampling, in Proceedings of the 34th Annual ACM Symposium on Theory of Computing (2000), pp. 152–161

  33. G. Gormode, S. Muthukrishan, Combinatorial algorithms for Compressed sensing, in Proceedings of the 40th Annual Conference on Information Sciences and Systems (2006), pp. 280–294

  34. Q. Huynh-Thu, M. Ghanbari, Scope of validity of PSNR in image/video quality assessment. Electron. Lett. 44(13), 800 (2008)

    Article  Google Scholar 

  35. R.E. Kass, P.W. Vos, Geometrical Foundations of Asymptotic Inference (Wiley, New York, 2011)

    MATH  Google Scholar 

  36. M.A. Khajehnejad, W. Xu, A.S. Avestimehr, B. Hassibi, Analyzing weighted l(1) minimization for sparse recovery with nonuniform sparse models. IEEE Trans. Signal Process. 59(5), 1985–2001 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. C. La, M.N. Do, Signal reconstruction using sparse tree representation, in Proceedings of Wavelets XI at SPIE Optics and Photonics (2005), pp. 120–125

  38. C. La, M.N. Do, Tree-based orthogonal matching pursuit algorithm for signal reconstruction, in IEEE International Conference on Image Processing (2006), pp. 1277–1285

  39. S.G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Inf. Theory 41(12), 3397–3415 (1993)

    MATH  Google Scholar 

  40. M.L. Menendez, D. Morales, L. Pardo, M. Salicrij, Statistical tests based on geodesic distances. Appl. Math. Lett. 8(1), 65–69 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  41. D. Merhej, C. Diab, M. Khalil, R. Prost, Embedding prior knowledge within compressed sensing by neural networks. IEEE Trans. Neural Netw. 22(10), 1638–1649 (2011)

    Article  Google Scholar 

  42. S. Muthukrishnan, Data streams: algorithms and applications. Found. Trends Theor. Comput. Sci. 1(2), 413-413 (2003)

    MathSciNet  Google Scholar 

  43. D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. D. Needell, R. Vershynin, Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math. 9(3), 317–334 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. F. Nielsen, Pattern learning and recognition on statistical manifolds. Int. Workshop Similarity Based Pattern Recognit. 79(53), 1–25 (2013)

    Google Scholar 

  46. F. Nielsen, V. Garcia. Statistical exponential families: a digest with flash cards (2009). arXiv:0911.4863

  47. B.J. Oommen, A. Thomas, “Anti-Bayesian” parametric pattern classification using order statistics criteria for some members of the exponential family. Pattern Recogn. 47(1SI), 40–55 (2014)

    Article  MATH  Google Scholar 

  48. H. Palangi, R. Ward, L. Deng, Distributed compressive sensing: a deep learning approach. IEEE Trans. Signal Process. 64(17), 4504–4518 (2016)

    Article  MathSciNet  Google Scholar 

  49. H. Palangi, R. Ward, L. Deng, Convolutional deep stacking networks for distributed compressive sensing. Signal Process. 131, 181–189 (2017)

    Article  Google Scholar 

  50. I. Rish, G. Grabarnik, Sparse signal recovery with exponential-family noise, in 47th Annual Allerton Conference on Communication, Control, and Computing (2009), pp. 60–66

  51. M.W. Seeger, Bayesian inference and optimal design for the sparse linear model. J. Mach. Learn. Res. 9, 759–813 (2008)

    MathSciNet  MATH  Google Scholar 

  52. J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  53. N. Vaswani, W. Lu, Modified-CS: modifying compressive sensing for problems with partially known support. IEEE Trans. Signal Process. 58(9), 4595–4607 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  54. J. Wang, S. Kwon, B. Shim, Generalized orthogonal matching pursuit. IEEE Signal Process. 60(1212), 6202–6216 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  55. Y. Xiang, J. Donley, E. Seletskaia, S. Shingare, J. Kamerud, B. Gorovits, A simple approach to determine a curve fitting model with a correct weighting function for calibration curves in quantitative ligand binding assays. AAPS J. 20(3), 45 (2018)

    Article  Google Scholar 

  56. Y. Yang, Polynomial curve fitting and lagrange interpolation. Math. Comput. Educ. 47(3), 224 (2013)

    Google Scholar 

  57. H. Zayyani, M. Babaie-Zadeh, C. Jutten, Bayesian Pursuit algorithm for sparse representation, in 2009 IEEE International Conference on Acoustics, Speech and Signal Processing (2009), pp. 1549–1552

  58. Y. Zhang, On Theory of Compressive Sensing via l 1-Minimization Simple Derivations and Extensions. Rice CAAM Department Technical Report (2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-Hu Ning.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M., Xiao, CB., Ning, ZH. et al. Neural Networks for Compressed Sensing Based on Information Geometry. Circuits Syst Signal Process 38, 569–589 (2019). https://doi.org/10.1007/s00034-018-0869-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0869-6

Keywords

Navigation