Impulsive Control for Target Estimation in Sensor Networks

Short Paper


State estimation of nonlinear systems over sensor networks is a current challenge. This work pertains to the study of the target estimation in sensor networks using impulsive control. We first propose an impulse-based filtering scheme of a class of nonlinear systems over sensor networks. Based on impulsive control theory and a comparison theorem, we then present generic criteria for estimation under the designed impulse-based filter. The performance is illustrated with simulations in a network with four sensor groups.


Estimation Sensor network Impulsive control Comparison principle 



This work is partially supported by National Natural Science Foundation of China (61473136).


  1. 1.
    B. Açıkmeşe, M. Mandić, J.L. Speyer, Decentralized observers with consensus filters for distributed discrete-time linear systems. Automatica 50(4), 1037–1052 (2014)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey. Comput. Netw. 38, 393–422 (2002)CrossRefGoogle Scholar
  3. 3.
    G.C. Calafiorea, F. Abratea, Distributed linear estimation over sensor networks. Int. J. Control 82(5), 868–882 (2009)MathSciNetCrossRefGoogle Scholar
  4. 4.
    W.H. Chen, W. Yang, X.M. Lu, Impulsive observer-based stabilisation of uncertain linear systems. IET Control Theory Appl. 8(3), 149–159 (2014)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Y. Ji, X.M. Liu, F. Ding, New criteria for the robust impulsive synchronization of uncertain chaotic delayed nonlinear systems. Nonlinear Dyn. 79(1), 1–9 (2015)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    V. Lakshmikantham, D. Bainov, P.S. Simeonov, Theory of Impulsive Differential Equations (World Scientific, Singapore, 1989)CrossRefMATHGoogle Scholar
  7. 7.
    D. Li, J. Lu, X. Wu, G. Chen, Estimating the ultimate bound and positively invariant set for the Lorenz system and a unified chaotic system. J. Math. Anal. Appl. 323(2), 844–853 (2006)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Z.G. Li, C.Y. Wen, Y.C. Soh, Analysis and design of impulsive control systems. IEEE Trans. Autom. Control 46(6), 894–897 (2001)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    C. Liang, F.X. Wen, Z.M. Wang, Distributed parameter estimation for univariate generalized gaussian distribution over sensor networks. Circuits Syst. Signal Process. 36(3), 1311–1321 (2017)CrossRefMATHGoogle Scholar
  10. 10.
    X. Lou, B. Cui, Adaptive consensus filters for second-order distributed parameter systems using sensor networks. Circuits Syst. Signal Process. 34(9), 2801–2818 (2015)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    X. Lou, Y. Li, R.G. Sanfelice, Robust stability of hybrid limit cycles with multiple jumps in hybrid dynamical systems. IEEE Trans. Autom. Control 63(4), 1220–1226 (2018)MathSciNetCrossRefGoogle Scholar
  12. 12.
    X. Lou, J.A.K. Suykens, Hybrid coupled local minimizers. IEEE Trans. Circuits Syst. I Regul. Pap. 61(2), 542–551 (2014)CrossRefGoogle Scholar
  13. 13.
    X. Lou, M.N.S. Swamy, A new approach to optimal control of conductance-based spiking neurons. Neural Netw. 96, 128–136 (2017)CrossRefGoogle Scholar
  14. 14.
    Y. Lu, L.G. Zhang, X.R. Mao, Distributed information consensus filters for simultaneous input and state estimation. Circuits Syst. Signal Process. 32(2), 877–888 (2013)MathSciNetCrossRefGoogle Scholar
  15. 15.
    R.Z. Luo, Impulsive control and synchronization of a new chaotic system. Phys. Lett. A 372(5), 648–653 (2008)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    R. Olfati-Saber, P. Jalalkamali, Coupled distributed estimation and control for mobile sensor networks. IEEE Trans. Autom. Control 57(10), 2609–2614 (2012)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    T. Raff, F. Allgöwer, Observers with impulsive dynamical behavior for linear and nonlinear continuous-time systems, in Proceedings of 46th IEEE Conference on Decision and Control, New Orleans, LA, 12–14 Dec 2007, pp. 4287–292Google Scholar
  18. 18.
    B. Shen, Z.D. Wang, Y.S. Hung, Distributed H\(\infty \)-consensus filtering in sensor networks with multiple missing measurements: the finite-horizon case. Automatica 46(10), 1682–1688 (2010)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    D.S. Simbeye, J.M. Zhao, S.F. Yang, Design and deployment of wireless sensor networks for aquaculture monitoring and control based on virtual instruments. Comput. Electron. Agric. 102, 31–42 (2014)CrossRefGoogle Scholar
  20. 20.
    J.T. Sun, Y.P. Zhang, Q.D. Wu, Less conservative conditions for asymptotic stability of impulsive control systems. IEEE Trans. Autom. Control 48(5), 829–831 (2003)CrossRefMATHGoogle Scholar
  21. 21.
    L. Xu, F. Ding, Parameter estimation for control systems based on impulse responses. Int. J. Control Autom. Syst. 15(6), 2471–2479 (2017)CrossRefGoogle Scholar
  22. 22.
    W. Yu, G. Chen, Z.D. Wang, W. Yang, Distributed consensus filtering in sensor networks. IEEE Trans. Syst. Man Cybern. Part B Cybern. 39(6), 1568–1577 (2009)CrossRefGoogle Scholar
  23. 23.
    C.H. Yu, J.W. Choi, Interacting multiple model filter-based distributed target tracking algorithm in underwater wireless sensor networks. Int. J. Control Autom. Syst. 12(3), 618–627 (2014)CrossRefGoogle Scholar
  24. 24.
    Y.H. Zhao, Y.Q. Yang, The impulsive control of cluster synchronization in coupled dynamical networks. Lecture Notes in Computer Science (Advances in Neural Networks-ISNN 2009), vol. 5552 (2009), pp. 1171–1179Google Scholar
  25. 25.
    J. Zhou, X.H. Cheng, L. Xiang, Y.C. Zhang, Impulsive control and synchronization of chaotic systems consisting of Van der Pol oscillators coupled to linear oscillators. Chaos Solitons Fractals 33(2), 607–616 (2007)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Wuxi Institute of TechnologyWuxiChina
  2. 2.Institute of System EngineeringJiangnan UniversityWuxiChina

Personalised recommendations