Two-Stage Estimator for Frequency Rate and Initial Frequency in LFM Signal Using Linear Prediction Approach

Article
  • 12 Downloads

Abstract

We propose a two-stage estimator to estimate chirp rate and initial frequency of the chirp signals in the presence of additive white Gaussian noise. In the first stage, the chirp rate estimation problem is reformulated as a single tone frequency estimation problem. Then, the frequency of single tone is estimated through a linear prediction approach. Using the chirp rate estimate in the first stage, we can convert the linear frequency modulated signal to a single tone. Similar to the first stage, the initial frequency is estimated via the linear prediction approach. The performance of the present method is assessed by comparison with Cramer–Rao lower bound and other existing methods through computer simulations. The proposed algorithm estimates well for different values of the chirp rate and initial frequency, as well as for different number of samples. In other words, this algorithm has uniform performance for various values of the signal parameters.

Keywords

Chirp rate estimation Frequency estimation Linear prediction Quadratic eignvalue problem 

References

  1. 1.
    T. Abatzoglou, Fast maximum likelihood joint estimation of frequency and frequency rate. IEEE Trans. Aerosp. Electron. Syst. AES–22(6), 708–715 (1986)CrossRefGoogle Scholar
  2. 2.
    O. Besson, M. Ghogho, A. Swami, Parameter estimation for random amplitude chirp signals. IEEE Trans. Signal Process. 47(12), 3208–3219 (1999)CrossRefGoogle Scholar
  3. 3.
    J. Cao, N. Zhang, L. Song, A fast algorithm for the chirp rate estimation, in IEEE International Symposium on Electronic Design, Test and Applications (2008), p. 45–48Google Scholar
  4. 4.
    C.E. Davila, A subspace approach to estimation of autoregressive parameters from noisy measurements. IEEE Trans. Signal Process. 46(2), 531–534 (1998)CrossRefGoogle Scholar
  5. 5.
    Z.M. Deng, L.M. Ye, M.Z. Fu, S.J. Lin, Y.X. Zhang, Further investigation on time-domain maximum likelihood estimation of chirp signal parameters. IET Signal Proc. 7(5), 444–449 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    P.M. Djuric, S.M. Kay, Parameter estimation of chirp signals. IEEE Trans. Acoust. Speech Signal Process. 38(12), 2118–2126 (1990)CrossRefGoogle Scholar
  7. 7.
    I. Djurovic, Viterbi algorithm for chirp-rate and instantaneous frequency estimation. Sig. Process. 91(5), 1308–1314 (2011)CrossRefGoogle Scholar
  8. 8.
    I. Djurovic, A WD-RANSAC instantaneous frequency estimator. IEEE Signal Process. Lett. 23(5), 757–761 (2016)CrossRefGoogle Scholar
  9. 9.
    I. Djurovic, QML-RANSAC: PPS and FM signals estimation in heavy noise environments. Signal Process. 130(1), 142–151 (2017)CrossRefGoogle Scholar
  10. 10.
    I. Djurovic, M. Simeunovic, S. Djukanovic, P. Wang, A hybrid CPF–HAF estimation of polynomial-phase signals: detailed statistical analysis. IEEE Trans. Signal Process. 60(10), 5010–5023 (2012)MathSciNetCrossRefGoogle Scholar
  11. 11.
    K. Heydari, P. Azmi, B. Abbasi, A. Heydari, Determining the parameters of chirp signals using cyclostationary method in presence of the interference. J. Fundam. Appl. Sci. 8(4), 478–486 (2016)CrossRefGoogle Scholar
  12. 12.
    M.Z. Ikram, K. Abed-Meraim, Y. Hua, Estimating the parameters of chirp signals: an iterative approach. IEEE Trans. Signal Process. 46(12), 3436–3441 (1998)CrossRefGoogle Scholar
  13. 13.
    M. Jankiraman, Design of Multi-frequency CW Radars (SciTech Publishing, New York, 2007)CrossRefGoogle Scholar
  14. 14.
    Y. Li, H. Fu, P.Y. Kam, Improved, approximate, time-domain ML estimators of chirp signal parameters and their performance analysis. IEEE Trans. Signal Process. 57(4), 1260–1272 (2009)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Y. Li, P.Y. Kam, Improved chirp parameter estimation using signal recovery method, in IEEE Vehicular Technology Conference (2010), pp. 1–5Google Scholar
  16. 16.
    Z. Li, W. Sheng-Li, N. Jin-Lin, L. Guo-Sui, Doppler frequency rate estimation for sar using match Fourier transform. Int. Conf. Neural Netw. Signal Process. 2, 1109–1112 (2003)Google Scholar
  17. 17.
    R.G. McKilliam, B.G. Quinn, I.V.L. Clarkson, B. Moran, B.N. Vellambi, Polynomial phase estimation by least squares phase unwrapping. IEEE Trans. Signal Process. 62(8), 1962–1975 (2014)MathSciNetCrossRefGoogle Scholar
  18. 18.
    A. Papoulis, S.U. Pillai, Probability, Random Variables, and Stochastic Processes (McGraw-Hill Education, New York, 2002)Google Scholar
  19. 19.
    L. Qi, R. Tao, S. Zhou, Y. Wang, Detection and parameter estimation of multicomponent LFM signal based on the fractional Fourier transform. Proc. Sci. China Ser. F: Inf. Sci. 47(2), 184–198 (2004)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    A. Springer, M. Huemer, L. Reindl, C.C. Ruppel, A. Pohl, F. Seifert, W. Gugler, R. Weigel, A robust ultra-broad-band wireless communication system using saw chirped delay lines. IEEE Trans. Microw. Theory Tech. 46(12), 2213–2219 (1998)CrossRefGoogle Scholar
  21. 21.
    S. Saha, S.M. Kay, Maximum likelihood parameter estimation of superimposed chirps using Monte Carlo importance sampling. IEEE Trans. Signal Process. 50(2), 224–230 (2002)CrossRefGoogle Scholar
  22. 22.
    A. Serbes, O. Aldimashki, A fast and accurate chirp rate estimation algorithm based on the fractional Fourier transform. EUSIPCO 190(1), 95–101 (2017)Google Scholar
  23. 23.
    P. Stoica, R.L. Moses, Spectral Analysis of Signals (Prentice Hall, Upper Saddle River, 2005)Google Scholar
  24. 24.
    P. Wang, P.V. Orlik, K. Sadamoto, W. Tsujita, F. Gini, Parameter estimation of hybrid sinusoidal FM-polynomial phase signal. IEEE Signal Process. Lett. 24(1), 66–70 (2017)CrossRefGoogle Scholar
  25. 25.
    H. Zhang, G. Zhang, J. Wang, \(\cal{H} _ {\infty } \) Observer design for LPV systems with uncertain measurements on scheduling variables: application to an electric ground vehicle. IEEE/ASME Trans. Mechatron. 21(3), 1659–1670 (2016)CrossRefGoogle Scholar
  26. 26.
    E.C. Zaugg, D.G. Long, Theory and application of motion compensation for LFM-CW SAR. IEEE Trans. Geosci. Remote Sens. 46(10), 2990–2998 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Electrical Engineering Department, Faculty of EngineeringShahid Chamran University of AhvazAhvazIran

Personalised recommendations