A 190 GHz VCO with Transformer-Based Push–Push Frequency Doubler in 40 nm CMOS

Short Paper
  • 28 Downloads

Abstract

A 190 GHz voltage-controlled oscillator (VCO) with transformer-based push–push frequency doubler in 40 nm CMOS is presented. The layout optimization reduces the parasitics of the transistors. To achieve high output power at a target operating frequency of 190 GHz, design considerations are discussed and a transformer-based push–push frequency doubler is introduced. The digital controlled artificial dielectric transmission line is proposed in replacement of switched-capacitor arrays whose capacitance is more susceptible to process variation. The presented circuit occupies 390 × 430 µm2 die area including the pads and consumes 57.6 mW DC power from a 0.9 V power supply. The proposed VCO achieves a measured continuous tuning range from 181.9 to 195.5 GHz. The measured output power at 195.5 GHz is − 7.26 dBm which is estimated with the typical conversion loss of harmonic mixer. The measured phase noise at 10 MHz offset is − 97.18 dBc/Hz.

Keywords

Sub-millimeter wave CMOS Voltage-controlled oscillator (VCO) Push–push oscillator Transformer 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China under Grant 61331003 and in part by Guangxi Key Laboratory of Precision Navigation Technology and Application under Grant DH201513.

References

  1. 1.
    F. Ahmed, M. Furqan, B. Heinemann, A. Stelzer: 0.3-THz SiGe-based high-efficiency push–push VCOs with >1-mW peak output power employing common-mode impedance enhancement, in IEEE Transactions on Microwave Theory and Techniques PP(99) (2017), pp. 1–15Google Scholar
  2. 2.
    J. Al-Eryani, H. Knapp, J. Wursthorn, K. Aufinger, H. Li, S. Majied, S. Boguth, R. Lachner, J. Bock, L. Maurer, A fundamental 229–240 GHz VCO with integrated dynamic frequency divider chain, in 2016 46th European Microwave Conference (EuMC), 4–6 Oct. 2016 (2016), pp. 489–492Google Scholar
  3. 3.
    U. Ali, G. Fischer, A. Thiede, Low power fundamental VCO design in D-band using 0.13 µm SiGe BiCMOS technology, in 2015 German Microwave Conference, 16–18 March 2015 (2015), pp. 359–362Google Scholar
  4. 4.
    C. Cao, E. Seok, K.O. Kenneth, 192 GHz push–push VCO in 0.13 µm CMOS. Electron. Lett. 42(4), 208–210 (2006)CrossRefGoogle Scholar
  5. 5.
    C. Cao, K.O. Kenneth, Millimeter-wave voltage-controlled oscillators in 0.13-um CMOS technology. IEEE J. Solid-State Circuits 41(6), 1297–1304 (2006)CrossRefGoogle Scholar
  6. 6.
    Y. Chen, K. Mouthaan, Wideband varactorless LC VCO using a tunable negative-inductance cell. IEEE Trans. Circuits Syst. I Regul. Pap. 57(10), 2609–2617 (2010)MathSciNetCrossRefGoogle Scholar
  7. 7.
    T.W. Crowe, W.L. Bishop, D.W. Porterfield, J.L. Hesler, R.M. Weikle, Opening the terahertz window with integrated diode circuits. IEEE J. Solid-State Circuits 40(10), 2104–2110 (2005)CrossRefGoogle Scholar
  8. 8.
    J. Grzyb, Y. Zhao, U.R. Pfeiffer, A 288-GHz lens-integrated balanced triple-push source in a 65-nm CMOS technology. IEEE J. Solid-State Circuits 48(7), 1751–1761 (2013)CrossRefGoogle Scholar
  9. 9.
    J. Grzyb, B. Heinemann, U.R. Pfeiffer, Solid-State terahertz superresolution imaging device in 130-nm SiGe BiCMOS technology. IEEE Trans. Microw. Theory Tech. 65(11), 4357–4372 (2017)CrossRefGoogle Scholar
  10. 10.
    P. Hillger, J. Grzyb, S. Malz, B. Heinemann, U. Pfeiffer, A lens-integrated 430 GHz SiGe HBT source with up to −6.3 dBm radiated power. in 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), 4–6 June 2017 (2017), pp. 160–163Google Scholar
  11. 11.
    R. Kananizadeh, O. Momeni, A 190-GHz VCO with 20.7% tuning range employing an active mode switching block in a 130 nm SiGe BiCMOS. IEEE J. Solid-State Circuits 52(8), 2094–2104 (2017)CrossRefGoogle Scholar
  12. 12.
    B. Khamaisi, E. Socher, A 159–169 GHz frequency source with 1.26 mW peak output power in 65 nm CMOS, in 2013 European Microwave Conference, 6–10 Oct. 2013 (2013), pp 1507–1510Google Scholar
  13. 13.
    H. Koo, C.Y. Kim, S. Hong, A G-band standing-wave push–push VCO using a transmission-line resonator. IEEE Trans. Microw. Theory Tech. 63(3), 1036–1045 (2015)CrossRefGoogle Scholar
  14. 14.
    T. LaRocca, T. Sai-Wang, H. Daquan, G. Qun, E. Socher, W. Hant, F. Chang, Millimeter-wave CMOS digital controlled artificial dielectric differential mode transmission lines for reconfigurable ICs, in 2008 IEEE MTT-S International Microwave Symposium Digest, 15–20 June 2008 (2008), pp. 181–184Google Scholar
  15. 15.
    X. Meng, Z. Wang, B. Chi, A 180 GHz differential Colpitts VCO in 65 nm CMOS. Analog Integr. Circ. Sig. Process 86(1), 25–31 (2016)CrossRefGoogle Scholar
  16. 16.
    X. Meng, B. Chi, Z. Wang, A 152-GHz OOK transmitter with 3-dBm output power in 65-nm CMOS. IEEE Microw. Wirel. Compon. Lett. 27(8), 748–750 (2017)CrossRefGoogle Scholar
  17. 17.
    O. Momeni, E. Afshari, High power terahertz and millimeter-wave oscillator design: a systematic approach. IEEE J. Solid-State Circuits 46(3), 583–597 (2011)CrossRefGoogle Scholar
  18. 18.
    P.H. Siegel, THz technology: an overview. Int. J. High Speed Electron. Syst. 13(2), 351–394 (2003)CrossRefGoogle Scholar
  19. 19.
    A. Tomkins, P. Garcia, S.P. Voinigescu, A passive W-band imaging receiver in 65-nm bulk CMOS. IEEE J. Solid-State Circuits 45(10), 1981–1991 (2010)CrossRefGoogle Scholar
  20. 20.
    S.P. Voinigescu, A. Tomkins, E. Dacquay, P. Chevalier, J. Hasch, A. Chantre, B. Sautreuil, A study of SiGe HBT signal sources in the 220–330 GHz range. IEEE J. Solid-State Circuits 48(9), 2011–2021 (2013)CrossRefGoogle Scholar
  21. 21.
    Z. Wang, P.Y. Chiang, P. Nazari, C.C. Wang, Z. Chen, P. Heydari, A CMOS 210-GHz fundamental transceiver with OOK modulation. IEEE J. Solid-State Circuits 49(3), 564–580 (2014)CrossRefGoogle Scholar
  22. 22.
    D.L. Woolard, R. Brown, M. Pepper, M. Kemp, Terahertz frequency sensing and imaging: a time of reckoning future applications? Proc. IEEE 93(10), 1722–1743 (2005)CrossRefGoogle Scholar
  23. 23.
    D. Zhao, P. Reynaert, A 60-GHz dual-mode class AB power amplifier in 40-nm CMOS. IEEE J. Solid-State Circuits 48(10), 2323–2337 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Electrical and Information EngineeringTianjin UniversityTianjinChina
  2. 2.Institute of MicroelectronicsTsinghua UniversityBeijingChina
  3. 3.School of MicroelectronicsTianjin UniversityTianjinChina

Personalised recommendations