Skip to main content
Log in

Reliable VLSI Architecture Design Using Modulo-Quad-Transistor Redundancy Method

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new static fault-tolerant technique, viz. modulo-quad-transistor, combining redundancy at circuit level with that at functional level, which offers considerably lower failure rate over all the popular fault-tolerant methods. The new approach of compound redundancy also combines the benefits of the two, reducing the overall performance problems by decreasing area, delay and power overheads. The method is free from the complex interconnection problems of the newly proposed quadded logic with quadded transistor method and also offers higher reliability than it. Low design cost and high reliability of the proposed method have made it suitable for designing fault-tolerant systems for many critical practical applications. Extensive simulation results using some of the ISCAS 85 benchmark circuits along with the detailed theoretical analysis have also been provided to demonstrate the superiority of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. L. Anghel, M. Nicolaidis, Defects tolerant logic gates for unreliable future nanotechnologies, in Computational and Ambient Intelligence, vol. 4507, Lecture Notes in Computer Science, ed. by F. Sandoval, A. Prieto, J. Cabestany, M. Graña (Springer, Berlin, 2007), pp. 422–429

    Chapter  Google Scholar 

  2. D. Bryan, The ISCAS’85 benchmark circuits and netlist format. Technischer Bericht, Microelectronics Center of North Carolina (1988)

  3. H. Chen, J. Han, F. Lombardi, A transistor-level stochastic approach for evaluating the reliability of digital nanometric CMOS circuits, in Proceedings IEEE International Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems, pp. 60–67 (2011)

  4. J. Chen, G. Venkataramani, H.H. Huang, Exploring dynamic redundancy to resuscitate faulty PCM blocks. ACM J. Emerg. Technol. Comput. Syst. 10(4), 1–23 (2014)

    Article  Google Scholar 

  5. Y. Cui, W. Li, X. Zhang, Memory controller design based on quadruple modular redundant architecture, in Proceedings International Conference on Computer Engineering and Networks, pp. 905–912 (2013)

  6. A.H. El-Maleh, K. Daud, Simulation-based method for synthesizing soft error tolerant combinational circuits. IEEE Trans. Reliab. 64(3), 935–948 (2015)

    Article  Google Scholar 

  7. A.H. El-Maleh, B.M. Al-Hashimi, A. Melouki, A. Al-Yamani, Transistor-level based defect-tolerance for reliable nanoelectronics, in Robust Computing with Nano-scale Devices, Lecture Notes in Electrical Engineering, ed. by C. Huang (Springer, Dordrecht, 2010), pp. 29–49

    Chapter  Google Scholar 

  8. J. Han, H. Chen, J. Liang, P. Zhu, Z. Yang, F. Lombardi, A stochastic computational approach for accurate and efficient reliability evaluation. IEEE Trans. Comput. 63(6), 1336–1350 (2014)

    Article  MathSciNet  Google Scholar 

  9. J. Han, E. Leung, L. Leibo, F. Lombardi, A fault-tolerant technique using quadded logic and quadded transistors. IEEE Trans. Very Large Scale Integr. VLSI Syst. 23(8), 1562–1566 (2015)

    Article  Google Scholar 

  10. E. Hatami, H. Salarieh, N. Vosoughi, Design of a fault tolerated intelligent control system for a nuclear reactor power control: using extended Kalman filter. J. Process Control 24(7), 1076–1084 (2014)

    Article  Google Scholar 

  11. C. He, M.F. Jacome, G. de Veciana, A reconfiguration-based defect-tolerant design paradigm for nanotechnologies. IEEE Des. Test. Comput. 22(4), 316–326 (2005)

    Article  Google Scholar 

  12. S. Hong, S. Kim, A low-cost mechanism exploiting narrow-width values for tolerating hard faults in ALU. IEEE Trans. Comput. 64(9), 2433–2446 (2015)

    Article  MathSciNet  Google Scholar 

  13. M.M. Ibrahim, K. Asami, M. Cho, Reconfigurable fault tolerant avionics system, in Proceedings IEEE Aerospace Conference, pp. 1–12 (2013)

  14. P.A. Jensen, Quadded NOR logic. IEEE Trans. Reliab. 12(3), 22–31 (1963)

    Article  Google Scholar 

  15. P. Jonker, J.A.B. Fortes, Toward hardware-redundant, fault-tolerant logic for nanoelectronics. IEEE Des. Test. Comput. 22(4), 328–339 (2005)

    Article  Google Scholar 

  16. M. Juliato, C. Gebotys, A quantitative analysis of a novel SEU-resistant SHA-2 and HMAC architecture for space missions security. IEEE Trans. Aerosp. Electron. Syst. 49(3), 1536–1554 (2013)

    Article  Google Scholar 

  17. F. Khan, Transistor-level defect-tolerant techniques for reliable design: at the nanoscale. Master of Science Thesis, King Fahd University of Petroleum and Minerals (2009)

  18. E.P. Kim, N.R. Shanbhag, Soft N-modular redundancy. IEEE Trans. Comput. 61(3), 323–336 (2012)

    Article  MathSciNet  Google Scholar 

  19. F. Kocan, D.G. Saab, Dynamic fault diagnosis of combinational and sequential circuits on reconfigurable hardware. J. Electron. Test. 23(5), 405–420 (2007)

    Article  Google Scholar 

  20. Z. Latifi, A. Karimi, A TMR genetic voting algorithm for fault-tolerant medical robot. Proc. Comput. Sci. 42, 301–307 (2014)

    Article  Google Scholar 

  21. R.E. Lyions, W. Vanderkulk, The use of triple modular redundancy to improve computer reliability. IBM J. Res. Dev. 6(2), 200–209 (1962)

    Article  Google Scholar 

  22. A. Mukherjee, A.S. Dhar, Real-time fault-tolerance with hot-standby topology for conditional sum adder. Microelectron. Reliab. 55(3–4), 704–712 (2015)

    Article  Google Scholar 

  23. A. Mukherjee, A.S. Dhar, Fault tolerant architecture design using quad-gate-transistor redundancy. IET Circuits Dev. Syst. 9(3), 152–160 (2015)

    Article  Google Scholar 

  24. A. Mukherjee, A.S. Dhar, New triple-transistor based defect-tolerant systems for reliable digital architectures, in Proceedings IEEE Int’l Symposium on Circuits and Systems (ISCAS), pp. 1917–1920 (2015)

  25. K. Nikolic, A. Sadek, M. Forshaw, Architectures for reliable computing with unreliable nanodevices, in Proceedings IEEE Conference on Nanotechnology, pp. 254–259 (2001)

  26. W.H. Pierce, Interwoven redundant logic. J. Frankl. Inst. 277(1), 55–85 (1964)

    Article  MathSciNet  Google Scholar 

  27. W. Qian, X. Li, M.D. Riedel, K. Bazargan, D.J. Lilja, An architecture for fault-tolerant computation with stochastic logic. IEEE Trans. Comput. 60(1), 93–105 (2011)

    Article  MathSciNet  Google Scholar 

  28. A.T. Sheikh, A.H. El-Maleh, M.E.S. Elrabaa, S.M. Sait, A. Fault, Tolerance technique for combinational circuits based on selective-transistor redundancy. IEEE Trans. Very Large Scale Integr. VLSI Syst. 25(1), 224–237 (2017)

    Article  Google Scholar 

  29. J.G. Tryon, Redundant logic circuitry, U. S. Patent 2,942,193, June 21, 1960

  30. J.G. Tryon, Quadded logic, in Redundancy Techniques for Computing Systems, ed. by R.H. Wilcox, W.C. Mann (Spartan Books, Washington, 1962), pp. 205–208

    Google Scholar 

  31. J. von Neumann, Probabilistic logic and the synthesis of reliable organisms from unreliable components, in Automata Studies: Annals of Mathematics Studies, vol. 34, ed. by C.E. Shannon, J. McCarthy (Princeton University Press, Princeton, 1956), pp. 43–98

    Google Scholar 

  32. H. Zhou, Y.H. Tang, J.F. Jiang, Design and implementation of scalable autonomous centralized fault-tolerant scheme for satellite system. Adv. Mater. Res. 532–533, 813–817 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atin Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, A., Dhar, A.S. Reliable VLSI Architecture Design Using Modulo-Quad-Transistor Redundancy Method. Circuits Syst Signal Process 37, 5595–5615 (2018). https://doi.org/10.1007/s00034-018-0837-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0837-1

Keywords

Navigation