Skip to main content
Log in

Exploiting Temporal Correlation for Detection of Non-stationary Signals Using a De-chirping Method Based on Time–Frequency Analysis

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Novel time–frequency (tf) methods are developed for the detection of non-stationary signals in the presence of noise with uncertain power. The proposed method uses instantaneous frequency estimation and de-chirping procedure to convert a non-stationary signal into a stationary signal, thus allowing us to exploit temporal correlation as an extra feature for signal detection in addition to the signal energy. The proposed method can be used for both mono-sensor and multi-sensor recordings. Area under receiver operating characteristic curve and probability of signal detection are used as criteria for comparing the performance of the proposed signal detection methods with the state of the art in the presence of noise power uncertainty. Simulation results indicate the superiority of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Ali, J.A. Lopez-Salcedo, G. Seco-Granados, Improved GLRT based on the exploitation of spatial correlation between neighbouring sensors, in Proceedings of 19th EUSIPCO, pp. 1045–1049 (2011)

  2. S. Ali, G. Seco-Granados, J.A. Lopez-Salcedo, Spectrum sensing with spatial signatures in the presence of noise uncertainty and shadowing. EURASIP J. Wirel. Commun. Netw. 2013, 150 (2013)

    Article  Google Scholar 

  3. S. Ali, D. Ramírez, M. Jansson, G. Seco-Granados, J.A. López-Salcedo, Multi-antenna spectrum sensing by exploiting spatio-temporal correlation. EURASIP J. Adv. Signal Process. 2014(1), 1–16 (2014)

    Article  Google Scholar 

  4. T.W. Anderson, An Introduction to Multivariate Statistical Analysis, vol. 2, 2nd edn. (Wiley, New York, 2003)

    MATH  Google Scholar 

  5. W.G. Anderson, R. Balasubramanian, Time-frequency detection of gravitational waves. Phys. Rev. D 60(10), 102001 (1999)

    Article  Google Scholar 

  6. E. Axell, G. Leus, E.G. Larsson, H.V. Poor, Spectrum sensing for cognitive radio: state-of-the-art and recent advances. IEEE Signal Process. Mag. 29(3), 101–116 (2012)

    Article  Google Scholar 

  7. B. Barkat, B. Boashash, A high-resolution quadratic time-frequency distribution for multicomponent signals analysis. IEEE Trans. Signal Process. 49(10), 2232–2239 (2001)

    Article  MATH  Google Scholar 

  8. B. Boashash, Estimating and interpreting the instantaneous frequency of a signal. II. Algorithms and applications. Proc. IEEE 80(4), 540–568 (1992)

    Article  Google Scholar 

  9. B. Boashash, G. Azemi, A review of time–frequency matched filter design with application to seizure detection in multichannel newborn EEG. Digit. Signal Process. 28, 28–38 (2014)

    Article  Google Scholar 

  10. B. Boashash, V. Sucic, Resolution measure criteria for the objective assessment of the performance of quadratic time–frequency distributions. IEEE Trans. Signal Process. 51(5), 1253–1263 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. S. Chen, X. Dong, Z. Peng, W. Zhang, G. Meng, Nonlinear chirp mode decomposition: a variational method. IEEE Trans. Signal Process. 65(22), 6024–6037 (2017)

    Article  MathSciNet  Google Scholar 

  12. I. Djurović, A WD-RANSAC instantaneous frequency estimator. IEEE Signal Process. Lett. 23(5), 757–761 (2016)

    Article  Google Scholar 

  13. I. Djurovic, QML-RANSAC: PPS and FM signals estimation in heavy noise environments. Signal Process. 130(Supplement C), 142–151 (2017)

    Article  Google Scholar 

  14. S.S. Haykin, J. Litva, T.J. Shepher, Radar Array Processing (Springer, New York, 1993)

    Book  Google Scholar 

  15. N.A. Khan, M. Sandsten, Time–frequency image enhancement based on interference suppression in Wigner–Ville distribution. Signal Process. 127, 80–85 (2016)

    Article  Google Scholar 

  16. O. Ledoit, M. Wolf, Some hypothesis tests for the covariance matrix when the dimension is large compared to the sample size. Ann. Stat. 30(4), 1081–1102 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  17. N. Lu, D.L. Zimmerman, The likelihood ratio test for a separable covariance matrix. Stat. Probab. Lett. 73(5), 449–457 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  18. S. Meignen, D.-H. Pham, S. McLaughlin, On demodulation, ridge detection, and synchrosqueezing for multicomponent signals. IEEE Trans. Signal Process. 65(8), 2093–2103 (2017)

    Article  MathSciNet  Google Scholar 

  19. M. Mohammadi, A.A. Pouyan, N.A. Khan, A highly adaptive directional time–frequency distribution. Signal Image Video Process. 10(7), 1369–1376 (2016)

    Article  Google Scholar 

  20. J.M. O’Toole, B. Boashash, Time-frequency detection of slowly varying periodic signals with harmonics: methods and performance evaluation. EURASIP J. Adv. Signal Process. 2011(1), 193797 (2011)

    Article  Google Scholar 

  21. S.J. Shellhammer, S. Shankar, R. Tandra, J. Tomcik, Performance of power detector sensors of DTV signals in IEEE 802.22 WRANs, in Proceedings of 1st International Workshop on Technology and policy for accessing spectrum (TAPAS), pp. 4–13 (2006)

  22. P.-L. Shui, Z. Bao, S. Hong-Tao, Nonparametric detection of FM signals using time–frequency ridge energy. IEEE Trans. Signal Process. 56(5), 1749–1760 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. J. Simmons, Echolocation in bats: signal processing of echoes for target range. Science 171(974), 925–928 (1971)

    Article  Google Scholar 

  24. L.J. Stankovic, I. Djurovic, A. Ohsumi, H. Ijima, Instantaneous frequency estimation by using Wigner distribution and Viterbi algorithm, in 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings.(ICASSP’03), Vol. 6. IEEE, pp. VI–121 (2003)

  25. R. Tandra, A. Sahai, SNR walls for signal detection. IEEE J. Sel. Top. Signal Process. 2(1), 17–24 (2008)

    Article  Google Scholar 

  26. E. Visotsky, S. Kuffner, R. Peterson, On collaborative detection of TV transmissions in support of dynamic spectrum sharing, in Proceedings of 1st IEEE DySPAN, pp. 338–345 (2005)

  27. S. Wang, X. Chen, G. Cai, B. Chen, X. Li, Z. He, Matching demodulation transform and synchrosqueezing in time–frequency analysis. IEEE Trans. Signal Process. 62(1), 69–84 (2014)

    Article  MathSciNet  Google Scholar 

  28. W. Yang, G. Durisiand, V.I. Morgenshtern, E. Riegler, Capacity pre-log of SIMO correlated block-fading channels, in 8th International Symposium Wireless Communication Systems (ISWCS), pp. 869–873 (2011)

  29. Y. Yang, X. Dong, Z. Peng, W. Zhang, G. Meng, Component extraction for non-stationary multi-component signal using parameterized de-chirping and band-pass filter. IEEE Signal Process. Lett. 22(9), 1373–1377 (2015)

    Article  Google Scholar 

  30. Y. Zeng, Y.C. Liang, Eigenvalue-based spectrum sensing algorithms for cognitive radio. IEEE Trans. Commun. 57(6), 1784–1793 (2009)

    Article  Google Scholar 

  31. Y. Zeng, Y.-C. Liang, Spectrum-sensing algorithms for cognitive radio based on statistical covariances. IEEE Trans. Veh. Technol. 58(4), 1804–1815 (2009)

    Article  Google Scholar 

  32. Y. Zeng, Y.-C. Liang, A.T. Hoang, R. Zhang, A review on spectrum sensing for cognitive radio: challenges and solutions. EURASIP J. Adv. Signal Process. 2010, 381465 (2010). https://doi.org/10.1155/2010/381465

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabeel Ali Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, N.A., Ali, S. Exploiting Temporal Correlation for Detection of Non-stationary Signals Using a De-chirping Method Based on Time–Frequency Analysis. Circuits Syst Signal Process 37, 3136–3153 (2018). https://doi.org/10.1007/s00034-018-0825-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0825-5

Keywords

Navigation