Skip to main content
Log in

Robust Non-fragile Asynchronous Controller Design for Continuous-Time Markov Jump Linear Systems: Non-homogeneous Markov Process Approach

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper proposes a robust asynchronous controller for continuous-time Markov jump linear systems (MJLSs). The asynchronous structure considers a case in which the Markov chain governing candidate controllers does not match the chain which manages the switching between system modes. This type of asynchronousy arises because the real-time, exact and precise detection of the system modes is not practical; therefore, the observed modes slightly differ with the actual modes. This paper models the asynchronousy through an additional, observed Markov chain which depends on the original Markov chain of the system according to uncertain transition probabilities. By this representation, the whole system is viewed as a non-homogeneous MJLS, and the sufficient stabilizability conditions as well as the controller gains are obtained through multiple mode-dependent Lyapunov functions. This approach leads to less conservative design results than the previous mode-independent schemes and proposes a much simple methodology to obtain the controller than the previous mode-dependent studies. For more generality, the proposed controller also takes the possible gain variations occurring in the implementation procedures into account and reports all the results in terms of linear matrix inequalities. Simulation results on a vertical takeoff and landing helicopter are presented and compared with the common mode-independent controller to illustrate the effectiveness of the developed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E. Allen, Modeling with Itô Stochastic Differential Equations (Springer, Dordrecht, 2007)

    MATH  Google Scholar 

  2. E.K. Boukas, Stochastic Switching Systems: Analysis and Design (Birkhäuser, Basel, 2005)

    Google Scholar 

  3. H. Cheng, C. Dong, W. Jiang, Q. Wang, Y. Hou, Non-fragile switched \(H_{\infty }\) control for morphing aircraft with asynchronous switching. Chin. J. Aeronaut. 30(3), 1127–1139 (2017)

    Article  Google Scholar 

  4. C.E. de Souza, A. Trofino, K.A. Barbosa, Mode-independent \(H_{\infty }\) filters for Markovian jump linear systems. IEEE Trans. Autom. Control 51(11), 1837–1841 (2006)

    Article  MATH  Google Scholar 

  5. N.T. Dzung, Stochastic stabilization of discrete-time Markov jump systems with generalized delay and deficient transition rates. Circuits Syst. Signal Process. 36(6), 1–21 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. M. Faraji-Niri, M.R. Jahed-Motlagh, Stochastic stability and stabilization of Markov jump linear system with instantly time-varying transition probabilities. ISA Trans. 65, 51–61 (2016)

    Article  Google Scholar 

  7. M. Faraji-Niri, M.R. Jahed-Motlagh, Stochastic stability and stabilization of semi-Markov jump linear systems with uncertain transition rates. J. Inf. Technol. Control 46(1), 37–52 (2017)

    MATH  Google Scholar 

  8. M. Faraji-Niri, M.R. Jahed-Motlagh, M. Barkhordari-Yazdi, Stochastic stability and stabilization of a class of piecewise-homogeneous Markov jump linear systems with mixed uncertainties. Int. J. Robust Nonlinear Control 27(6), 894–914 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Gao, D. Wang, Input-to-state stability and integral input-to-state stability for impulsive switched systems with time-delay under asynchronous switching. Nonlinear Anal. Hybrid Syst. 20, 55–71 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. S. Huang, Z. Xiang, Robust \(L_{\infty }\) reliable control for uncertain switched nonlinear systems with time delay under asynchronous switching. Appl. Math. Comput. 222, 658–670 (2013)

    MathSciNet  MATH  Google Scholar 

  11. S. Huo, M. Chen, H. Shen, Non-fragile mixed \(H_{\infty }\) and passive asynchronous state estimation for Markov jump neural networks with randomly occurring uncertainties and sensor nonlinearity. Neurocomputing 227, 46–53 (2017)

    Article  Google Scholar 

  12. R.S.H. Istepanian, J.F. Whidborne (eds.), Digital Controller Implementation and Fragility: A Modern Perspective (Springer, London, 2001)

    Google Scholar 

  13. S.H. Kim, Control design of non-homogeneous Markovian jump systems via relaxation of bilinear time-varying matrix inequalities. IET Control Theory Appl. 11(1), 47–56 (2016)

    MathSciNet  Google Scholar 

  14. E. Kiyak, O. Cetin, A. Kahvecioglu, Aircraft sensor fault detection based on unknown input observers. Aircr. Eng. Aerosp. Technol. 80(5), 545–548 (2008)

    Article  Google Scholar 

  15. N.K. Kwon, B.Y. Park, P. Park, Less conservative stabilization conditions for Markovian jump systems with incomplete knowledge of transition probabilities and input saturation. Optim. Control Appl. Methods 37(6), 1207–1216 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Li, P. Shi, D. Yao, Adaptive sliding mode control of Markov jump nonlinear systems with actuator faults. IEEE Trans. Autom. Control 62(4), 1933–1939 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. F. Li, L. Wu, P. Shi, C.C. Lim, State estimation and sliding mode control for semi-Markovian jump systems with mismatched uncertainties. Automatica 51, 385–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. J. Lian, Y. Ge, Robust \(H_{\infty }\) output tracking control for switched systems under asynchronous switching. Nonlinear Analy. Hybrid Syst. 8, 57–68 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. J. Löfberg, YALMIP: A toolbox for modeling and optimization in MATLAB, in 2004 IEEE International Symposium on Computer Aided Control Systems Design, Taipei, Taiwan, 2–4 Sept 2004, pp. 284–289

  20. M. Mariton, Jump Linear Systems in Automatic Control (Marcel Dekker, New York, 1990)

    Google Scholar 

  21. P. Mhaskar, N.H. El-Farra, P.D. Christofdes, Robust predictive control of switched systems: satisfying uncertain schedules subject to state and control constraints. Int. J. Adapt. Control Signal Process. 22(2), 161–179 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. R.C.L.F. Oliveira, A.N. Vargas, J.B.R. do Val, P.L.D. Peres, Mode-independent \(H_{2 }\) control of a DC motor modeled as a Markov jump linear system. IEEE Trans. Control Syst. Technol. 22(5), 1915–1919 (2013)

    Article  Google Scholar 

  23. F.R. Pour Safaei, K. Roh, S.R. Proulx, J.P. Hespanha, Quadratic control of stochastic hybrid systems with renewal transitions. Automatica 50(11), 2822–2834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. N. Poursafar, H.D. Taghirad, M. Haeri, Model predictive control of non-linear discrete time systems: a linear matrix inequality approach. IET Control Theory Appl. 4(10), 1922–1932 (2010)

    Article  MathSciNet  Google Scholar 

  25. L. Qiu, S. Li, B. Xu, G. Xu, \(H_{\infty }\) control of networked control systems based on Markov jump unified model. Int. J. Robust Nonlinear Control 25(15), 2770–2786 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. M. Rasheduzzaman, M.O. Rolla, T. Paul, J.W. Kimball, Markov jump linear system analysis of microgrid stability, in American Control Conference, pp. 5062–5066, Portland, USA, 4–6 June (2014)

  27. W. Ren, J. Xiong, Stability and stabilization of switched stochastic systems under asynchronous switching. Syst. Control Lett. 97, 184–192 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. P. Shi, F. Li, A survey on Markovian jump systems: modeling and design. Int. J. Control Autom. Syst. 13(1), 1–16 (2015)

    Article  MathSciNet  Google Scholar 

  29. P. Shi, F. Li, L. Wu, C.C. Lim, Neural network-based passive filtering for delayed neutral-type semi-Markovian jump systems. IEEE Trans. Neural Netw. Learn. Syst. 28(9), 2101–2114 (2017)

    MathSciNet  Google Scholar 

  30. Z. Shu, J. Xiong, J. Lam, Asynchronous output-feedback stabilization of discrete-time Markovian jump linear systems, in 51st IEEE Conference on Decision and Control, Maui, HI, USA, pp. 1307–1312, 10–13 Dec (2012)

  31. Y. Tingting, L. Aijun, N. Erzhuo, Robust dynamic output feedback control for switched polytopic systems under asynchronous switching. Chin. J. Aeronaut. 28(4), 1226–1235 (2015)

    Article  Google Scholar 

  32. M.G. Todorov, M.D. Fragoso, New methods for mode-independent robust control of Markov jump linear systems. Syst. Control Lett. 90, 38–44 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. A.N. Vargas, L.P. Sampaio, L. Acho, L. Zhang, J.B.R. do Val, Optimal control of DC–DC buck converter via linear systems with inaccessible Markovian jumping modes. IEEE Trans. Control Syst. Technol. 24(5), 1820–1827 (2016)

    Article  Google Scholar 

  34. J. Wang, S. Ma, C. Zhang, Finite-time stabilization for nonlinear discrete-time singular Markov jump systems with piecewise-constant transition probabilities subject to average dwell time. J. Frankl. Inst. 354(5), 2102–2124 (2017)

    Article  MathSciNet  Google Scholar 

  35. Y.E. Wang, X.M. Sun, Lyapunov–Krasovskii functionals for switched nonlinear input delay systems under asynchronous switching. Automatica 61, 126–133 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. R. Wang, J. Xing, P. Wang, Q. Yang, Z. Xiang, \(L_{\infty }\) control with finite-time stability for switched systems under asynchronous switching. Math. Probl. Eng. (2012). https://doi.org/10.1155/2012/929503

  37. J. Wen, L. Peng, S.K. Nguang, Asynchronous \(H_{\infty }\) control of constrained Markovian jump linear systems with average dwell time. Int. J. Sens. Wirel. Commun. Control 3(1), 45–58 (2013)

    Article  Google Scholar 

  38. Z.G. Wu, P. Shi, H. Sua, J. Chua, Asynchronous \(l_{2}\)-\(l_{\infty }\) filtering for discrete-time stochastic Markov jump systems with randomly occurred sensor nonlinearities. Automatica 50(1), 180–186 (2014)

    Article  MathSciNet  Google Scholar 

  39. Y. Wua, J. Cao, Q. Li, A. Alsaedi, F.E. Alsaadi, Finite-time synchronization of uncertain coupled switched neural networks under asynchronous switching. Neural Netw. 85, 128–139 (2017)

    Article  Google Scholar 

  40. L. Xie, Output-feedback \(H_{\infty }\) control of systems with parameter uncertainty. Int. J. Control 63(4), 741–750 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  41. Z. Yan, Y. Song, J.H. Park, Finite-time stability and stabilization for stochastic Markov jump systems with mode-dependent time delays. ISA Trans. 68, 141–149 (2017)

    Article  Google Scholar 

  42. Y. Yin, Z. Lin, Constrained control of uncertain nonhomogeneous Markovian jump systems. Int. J. Robust Nonlinear Control 27(17), 3937–3950 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Y. Yin, P. Shi, F. Liu, K.L. Teo, Robust control on saturated Markov jump systems with missing information. Inf. Sci. 265, 123–138 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  44. L. Zhang, \(H_{\infty }\) estimation for discrete-time piecewise homogeneous Markov jump linear system. Automatica 45(11), 2570–2576 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. R. Zhang, Y. Zhang, C. Hu, M.Q.H. Meng, Q. He, Asynchronous \(H_{\infty }\) filtering for a class of two-dimensional Markov jump systems. IET Control Theory Appl. 6(C), 979–984 (2012)

    Article  MathSciNet  Google Scholar 

  46. Y. Zhang, R. Zhang, A.G. Wu, Asynchronous \(l_{2}-l_{\infty }\) filtering for Markov jump systems, in Australian Control Conference, Perth, Australia, pp. 99–103, 4–5 Nov (2013)

  47. R. Zhang, Y. Zhang, Y. Zhao, J. Liao, B. Li, Extended \(H_{\infty }\) estimation for two-dimensional Markov jump systems under asynchronous switching. Math. Probl. Eng. (2012). https://doi.org/10.1155/2013/734271

  48. Y. Zhu, L. Zhang, M.V. Basin, Nonstationary \(H_{\infty }\) dynamic output feedback control for discrete time Markov jump linear systems with actuator and sensor saturations. Int. J. Robust Nonlinear Control 26(5), 1010–1025 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mona Faraji-Niri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faraji-Niri, M. Robust Non-fragile Asynchronous Controller Design for Continuous-Time Markov Jump Linear Systems: Non-homogeneous Markov Process Approach. Circuits Syst Signal Process 37, 4234–4255 (2018). https://doi.org/10.1007/s00034-018-0767-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0767-y

Keywords

Navigation