Skip to main content
Log in

Finite-Time \(H_{\infty }\) Filtering for Discrete-Time Piecewise Homogeneous Markov Jump Systems with Missing Measurements

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The problem of finite-time \(H_{\infty }\) filtering is studied for discrete-time Markov jump systems with time-varying transition probabilities and missing measurements. The time-varying TPs are assumed to be finite piecewise homogenous and the missing measurements phenomenon is modelled as a Bernoulli distributed sequence. An \(H_{\infty }\) filter is designed to estimate the unmeasured state and achieve a prescribed \(H_{\infty }\) performance level. The sufficient criteria are derived to guarantee the filtering error system to be finite-time bounded. Finally, a simulation example is presented to demonstrate the applicability of the obtained results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. C.K. Ahn, P. Shi, M.V. Basin, Two-dimensional dissipative control and filtering for roesser model. IEEE Trans. Autom. Control 60, 1745–1759 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. C.K. Ahn, Y.S. Shmaliy, S. Zhao, H. Li, Continuous-time deadbeat \({H}_{2}\) FIR filter. IEEE Trans. Circuits Syst. II Express Briefs 64, 987–991 (2017)

    Article  Google Scholar 

  3. E.K. Boukas, Z.K. Liu, Robust \({H}_{\infty }\) control of discrete-time Markovian jump linear systems with mode-dependent time-delays. IEEE Trans. Autom. Control 46, 1918–1924 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. A.P. Bowling, Dynamic performance, mobility, and agility of multilegged robots. J. Dyn. Syst. Meas. Control 128, 765–777 (2006)

    Article  Google Scholar 

  5. J. Cheng, H. Zhu, S. Zhong, Y. Zeng, L. Hou, Finite-time \({H}_{\infty }\) filtering for a class of discrete-time Markovian jump systems with partly unknown transition probabilities. Int. J. Adapt. Control Signal Process. 28, 1024–1042 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Cheng, H. Zhu, S. Zhong, Q. Zhong, Y. Zeng, Finite-time \({H}_{\infty }\) estimation for discrete-time Markov jump systems with time-varying transition probabilities subject to average dwell time switching. Commun. Nonlinear Sci. Numer. Simul. 20, 571–582 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  7. C.E. De Souza, Robust stability and stabilization of uncertain discrete-time Markovian jump linear systems. IEEE Trans. Autom. Control 51, 836–841 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. F. Deng, S. Guan, X. Yue, X. Gu, J. Chen, J. Lv, J. Li, Energy-based sound source localization with low power consumption in wireless sensor networks. IEEE Trans. Ind. Electron. 64, 4894–4902 (2017)

    Article  Google Scholar 

  9. F. Deng, S. Guo, R. Zhou, J. Chen, Sensor multifault diagnosis with improved support vector machines. IEEE Trans. Autom. Sci. Eng. 14, 1053–1063 (2017)

    Article  Google Scholar 

  10. Y. Ding, H. Liu, J. Cheng, \({H}_{\infty }\) filtering for a class of discrete-time singular Markovian jump systems with time-varying delays. ISA Trans. 53, 1054–1060 (2014)

    Article  Google Scholar 

  11. M. Faraji-Niri, M.-R. Jahed-Motlagh, M. Barkhordari-Yazdi, Stochastic stability and stabilization of a class of piecewise-homogeneous Markov jump linear systems with mixed uncertainties. Int. J. Robust Nonlinear Control 27, 894–914 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  12. C. Guan, Z. Fei, Z. Li, Y. Xu, Improved \({H}_{\infty }\) filter design for discrete-time Markovian jump systems with time-varying delay. J. Frankl. Inst. 353, 4156–4175 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. J.T. Huang, T.V. Hung, M.L. Tseng, Smooth switching robust adaptive control for omnidirectional mobile robots. IEEE Trans. Control Syst. Technol. 23, 1986–1993 (2015)

    Article  Google Scholar 

  14. F. Li, C. Du, C. Yang, W. Gui, Passivity-based asynchronous sliding mode control for delayed singular Markovian jump systems. IEEE Trans. Autom. Control (2017). https://doi.org/10.1109/TAC.2017.2776747

    Google Scholar 

  15. F. Li, P. Shi, C.-C. Lim, L. Wu, Fault detection filtering for nonhomogeneous Markovian jump systems via fuzzy approach. IEEE Trans. Fuzzy Syst. (2016). https://doi.org/10.1109/TFUZZ.2016.2641022

    Google Scholar 

  16. F. Li, P. Shi, L. Wu, M.V. Basin, C.-C. Lim, Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems. IEEE Trans. Ind. Electron. 62, 2330–2340 (2015)

    Article  Google Scholar 

  17. F. Li, L. Wu, P. Shi, C.-C. Lim, State estimation and sliding mode control for semi-Markovian jump systems with mismatched uncertainties. Automatica 51, 385–393 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Y. Li, S. Tong, Adaptive fuzzy output-feedback stabilization control for a class of switched nonstrict-feedback nonlinear systems. IEEE Trans. Cybern. 47, 1007–1016 (2017)

    Article  Google Scholar 

  19. Y. Li, S. Tong, L. Liu, G. Feng, Adaptive output-feedback control design with prescribed performance for switched nonlinear systems. Automatica 80, 225–231 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. H. Liu, D.W.C. Ho, F. Sun, Design of \({H}_{\infty }\) filter for Markov jumping linear systems with non-accessible mode information. Automatica 44, 2655–2660 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. M. Liu, P. Shi, L. Zhang, X. Zhao, Fault-tolerant control for nonlinear Markovian jump systems via proportional and derivative sliding mode observer technique. IEEE Trans. Circuits Syst. I 58, 2755–2764 (2011). Regul. Papers

    Article  MathSciNet  Google Scholar 

  22. M. Liu, L. Zhang, P. Shi, Y. Zhao, Sliding mode control of continuous-time Markovian jump systems with digital data transmission. Automatica 80, 200–209 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y. Liu, F. Liu, Disturbance rejection for Markov jump systems with partly unknown transition probabilities and saturation. Circuits Syst. Signal Process. 32, 2783–2797 (2013)

    Article  MathSciNet  Google Scholar 

  24. K. Loparo, G. Blankenship, A probabilistic mechanism for small disturbance instabilities in electric power systems. IEEE Trans. Circuits Syst. 32, 177–184 (1985)

    Article  Google Scholar 

  25. R. Lu, J. Tao, P. Shi, H. Su, Z.-G. Wu, Y. Xu, Dissipativity-based resilient filtering of periodic Markovian jump neural networks with quantized measurements. IEEE Trans. Neural Netw. Learn. Syst. (2017). https://doi.org/10.1109/TNNLS.2017.2688582

    Google Scholar 

  26. S.G. Nersesov, W.M. Haddad, Finite-time stabilization of nonlinear impulsive dynamical systems. Nonlinear Anal. Hybrid Syst. 2, 832–845 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. S.K. Nguang, W. Assawinchaichote, P. Shi, \({H}_{\infty }\) filter for uncertain Markovian jump nonlinear systems: an LMI approach. Circuits Syst. Signal Process. 26, 853–874 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  28. S.M. Rakhtala, M. Yasoubi, H. Hosseinnia, Design of second order sliding mode and sliding mode algorithms: a practical insight to DC–DC buck converter. IEEE/CAA J. Autom. Sin. 4, 483–497 (2017)

    Article  MathSciNet  Google Scholar 

  29. M. Shen, G. Zhang, Y. Yuan, D. Ye, Relaxed \({H}_{\infty }\) controller design for continuous Markov jump system with incomplete transition probabilities. Circuits Syst. Signal Process. 33, 1393–1410 (2014)

    Article  MathSciNet  Google Scholar 

  30. P. Shi, Y. Xia, G.P. Liu, D. Rees, On designing of sliding-mode control for stochastic jump systems. IEEE Trans. Autom. Control 51, 97–103 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. P. Shi, Y. Zhang, R.K. Agarwal, Stochastic finite-time state estimation for discrete time-delay neural networks with Markovian jumps. Neurocomputing 151, 168–174 (2015)

    Article  Google Scholar 

  32. H. Su, W. Han, C. Xia, Observer-based discrete-time nonnegative edge synchronization of networked systems. IEEE Trans. Neural Netw. Learn. Syst. 28, 2446–2455 (2017)

    Article  MathSciNet  Google Scholar 

  33. H. Su, H. Wu, X. Chen, M.Z.Q. Chen, Positive edge consensus of complex networks. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2765678

    Google Scholar 

  34. J. Tao, R. Lu, P. Shi, H. Su, Z.-G. Wu, Dissipativity-based reliable control for fuzzy Markov jump systems with actuator faults. IEEE Trans. Cybern. 47, 2377–2388 (2017)

    Article  Google Scholar 

  35. S. Tong, L. Zhang, Y. Li, Observed-based adaptive fuzzy decentralized tracking control for switched uncertain nonlinear large-scale systems with dead zones. IEEE Trans. Syst. Man Cybern. Syst. 46, 37–47 (2015)

    Article  Google Scholar 

  36. G. Wang, Q. Zhang, V. Sreeram, Partially mode-dependent \({H}_{\infty }\) filtering for discrete-time Markovian jump systems with partly unknown transition probabilities. Signal Process. 90, 548–556 (2010)

    Article  MATH  Google Scholar 

  37. L. Wang, M. Basin, H. Li, R. Lu, Observer-based composite adaptive fuzzy control for nonstrict-feedback systems with actuator failures. IEEE Trans. Fuzzy Syst. (2017). https://doi.org/10.1109/TFUZZ.2017.2774185

    Google Scholar 

  38. Y. Wu, X. He, Secure consensus control for multi-agent systems with attacks and communication delays. IEEE/CAA J. Autom. Sin. 4, 136–142 (2017)

    Article  MathSciNet  Google Scholar 

  39. D. Yao, R. Lu, Y. Xu, L. Wang, Robust \({H}_{\infty }\) filtering for Markov jump systems with mode-dependent quantized output and partly unknown transition probabilities. Signal Process. 137, 328–338 (2017)

    Article  Google Scholar 

  40. M. Yue, L. Wang, T. Ma, Neural network based terminal sliding mode control for WMRs affected by an augmented ground friction with slippage effect. IEEE/CAA J. Autom. Sin. 4, 498–506 (2017)

    Article  MathSciNet  Google Scholar 

  41. B. Zhang, J. Lam, S. Xu, Relaxed results on reachable set estimation of time-delay systems with bounded peak inputs. Int. J. Robust Nonlinear Control 26, 1994–2007 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. B. Zhang, W.X. Zheng, S. Xu, Filtering of Markovian jump delay systems based on a new performance index. IEEE Trans. Circuits Syst. I Regul. Pap. 60, 1250–1263 (2013)

    Article  MathSciNet  Google Scholar 

  43. L. Zhang, \({H}_{\infty }\) estimation for discrete-time piecewise homogeneous Markov jump linear systems. Automatica 45, 2570–2576 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  44. L. Zhang, E.K. Boukas, Mode-dependent \({H}_{\infty }\) filtering for discrete-time Markovian jump linear systems with partly unknown transition probabilities. Automatica 45, 1462–1467 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  45. L. Zhang, Y. Shi, T. Chen, B. Huang, A new method for stabilization of networked control systems with random delays. IEEE Trans. Autom. Control 50, 1177–1181 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  46. Y. Zhang, G. Cheng, C. Liu, Finite-time unbiased \({H}_{\infty }\) filtering for discrete jump time-delay systems. Appl. Math. Model. 38, 3339–3349 (2014)

    Article  MathSciNet  Google Scholar 

  47. Y. Zhang, C. Liu, Y. Song, Finite-time \({H}_{\infty }\) filtering for discrete-time Markovian jump systems. J. Frankl. Inst. 350, 1579–1595 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  48. Q. Zhou, H. Li, L. Wang, R. Lu, Prescribed performance observer-based adaptive fuzzy control for nonstrict-feedback stochastic nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. (2017). https://doi.org/10.1109/TSMC.2017.2738155

    Google Scholar 

  49. Q. Zhou, H. Li, C. Wu, L. Wang, C.K. Ahn, Adaptive fuzzy control of nonlinear systems with unmodeled dynamics and input saturation using small-gain approach. IEEE Trans. Syst. Man Cybern. Syst. 47, 1979–1989 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (61673072), the Guangdong Natural Science Funds for Distinguished Young Scholar (2017A030306014), the Department of Education of Guangdong Province (2016KTSCX030), the Department of Education of Liaoning Province (LZ2017001) and the Fundamental Research Funds for the Central Universities (2017FZA5010).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Zhou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, X., Ren, H., Yao, D. et al. Finite-Time \(H_{\infty }\) Filtering for Discrete-Time Piecewise Homogeneous Markov Jump Systems with Missing Measurements. Circuits Syst Signal Process 37, 3927–3945 (2018). https://doi.org/10.1007/s00034-018-0747-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-018-0747-2

Keywords

Navigation