Skip to main content

An Efficient Approach to Restore Naturalness of Non-uniform Illumination Images


Enhancement of the image details without affecting the naturalness is a difficult task, especially for non-uniformly illuminated images. While dealing with non-uniformly illuminated images, most of the available image enhancement approaches show common drawbacks such as loss of naturalness and appearance of artifacts in the resultant image. It is very difficult to maintain a trade-off between detail enhancement and naturalness. To deal with this problem, we propose an efficient approach for enhancing local details as well as the color information and preserve the naturalness in the resultant image. The proposed method is effectively enhancing the local details, along with the visibility of the image (having dark and bright regions) without affecting the naturalness. Experimental results also support our claims and confirmations that the proposed approach outperforms other state-of-the-art methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. T. Arici, S. Dikbas, Y. Altunbasak, A histogram modification framework and its application for image contrast enhancement. IEEE Trans. Image Process. 18(9), 1921–1935 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Chen, A. Beghdadi, Natural enhancement of color image. EURASIP J. Image Video Process. 2010(2), 1–19 (2010)

    Article  Google Scholar 

  3. S. Chen, A. Beghdadi, Natural rendering of color image based on retinex. in Proceedings on IEEE International Conference on Image Processing, Cairo, 1813–1816 November 2009

  4. S.D. Chen, R. Ramli, Contrast enhancement using recursive mean-separate histogram equalization for scalable brightness preservation. IEEE Trans. Consum. Electron. 49(4), 1301–1309 (2003)

    Article  Google Scholar 

  5. S.-D. Chen, R. Ramli, Minimum mean brightness error bi-histogram equalization in contrast enhancement. IEEE Trans. Consum. Electron. 49(4), 1310–1319 (2003)

    Article  Google Scholar 

  6. D. Coltuc, P. Bolon, J. Chassery, Exact histogram specification. IEEE Trans. Image Process. 15(5), 1143–1152 (2006)

    Article  Google Scholar 

  7. G. Deng, A generalized unsharp masking algorithm. IEEE Trans. Image Process. 20(5), 1249–1261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. R.C. Gonzalez, R.E. Woods, Digital Image Processing, 3rd edn. (Pearson Prentice-hall, Englewood Cliffs, 2009)

    Google Scholar 

  9. G. Guarnieri, S. Marsi, G. Ramponi, High dynamic range image display with halo and clipping prevention. IEEE Trans. Image Process. 20(5), 1351–1362 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. B. Gupta, T.K. Agarwal, Linearly quantile separated weighted dynamic histogram equalization for contrast enhancement. Comput. Electr. Eng. (2017) .

  11. B. Gupta, M. Tiwari, Minimum mean brightness error contrast enhancement of color images using adaptive gamma correction with color preserving framework. Int. J. Light Electron Opt. 127, 1671–1676 (2015)

    Article  Google Scholar 

  12. H. Ibrahim, N. Kong, Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(4), 1752–1758 (2007)

    Article  Google Scholar 

  13. D.J. Jobson, Z. Rahman, G.A. Wodell, A multiscale retinex for bridging the gap between color images and the human observation of scenes. IEEE Trans. Image Process. 6(7), 965–976 (1997)

    Article  Google Scholar 

  14. D.J. Jobson, Z. Rahman, G.A. Wodell, Properties and performance of a center/surround retinex. IEEE Trans. Image Process. 6(3), 451–462 (1997)

    Article  Google Scholar 

  15. Z. Karel, Contrast Limited Adaptive Histogram Equalization (Academic Press Professional, New York, 1998), pp. 474–485

    Google Scholar 

  16. Y.T. Kim, Contrast enhancement using brightness preserving bi-histogram equalization. IEEE Trans. Consum. Electron. 43(1), 1–8 (1997)

    Article  Google Scholar 

  17. R. Kimmel, M. Elad, D. Shaked, R. Keshet, I. Sobel, A variational framework for retinex. Int. J. Comput. Vis. 52(1), 7–23 (2003)

    Article  MATH  Google Scholar 

  18. E.W. Land, J.J. McMann, Lightness and retinex theory. J. Opt. Soc. Am. 61(1), 1–11 (1971)

    Article  Google Scholar 

  19. B. Li, S. Wang, Y. Geng, Image enhancement based on retinex and lightness decomposition. in Proceedings of IEEE International Conference on Image Processing, Blussels, 3417–3420 September 2011

  20. M. Luo, G. Cui, B. Rigg, The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res. Appl. 26, 340–350 (2001)

    Article  Google Scholar 

  21. L. Meylan, Tone mapping for high dynamic range images. Ph.D thesis, EPFL (2006)

  22. L. Meylan, S. Ssstrunk, High dynamic range image rendering with a retinex-based adaptive filter. IEEE Trans. Instrum. Meas. 15(9), 2820–2830 (2006)

    Google Scholar 

  23. S. Poddar, S. Tewary, D. Sharma et al., Non-parametric modified histogram equalisation for contrast enhancement. IET Image Process. 7(7), 641–652 (2013)

    Article  Google Scholar 

  24. A. Polesel, G. Ramponi, V.J. Mathews, Image enhancement via adaptive unsharp masking. IEEE Trans. Image Process. 9(3), 505–510 (2000)

    Article  Google Scholar 

  25. Z. Rahman, D.J. Jobson, G.A. Woodell, Retinex processing for automatic image enhancement. J. Electron. Imaging 13(1), 100–110 (2004)

    Article  Google Scholar 

  26. D. Sheet, H. Garud, A. Suveer, M. Mahadevappa, J. Chatterjee, Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans. Consum. Electron. 56(4), 2475–2480 (2010)

    Article  Google Scholar 

  27. C. Shen, W. Hwang, Color image enhancement using retinex with robust envelope. in Proceedings of IEEE International Conference on Image Processing, Cairo, 3141–3144 November 2009

  28. Y. Shin, S. Jeong, S. Lee, Efficient naturalness restoration for nonuniform illumination images. IET Image Process. 9(8), 662–671 (2015)

    Article  Google Scholar 

  29. G. Thomas, D. Flores-Tapia, S. Pistorius, Histogram specification: a fast and flexible method to process digital images. IEEE Trans. Instrum. Meas. 60(5), 1565–1578 (2011)

    Article  Google Scholar 

  30. M. Tiwari, B. Gupta, M. Shrivastava, High speed quantile based histogram equalization for brightness preservation and contrast enhancement. IET Image Process. 9(1), 80–89 (2014)

    Article  Google Scholar 

  31. M. Tiwari, B. Gupta, Brightness preserving contrast enhancement of medical images using adaptive gamma correction and homomorphic filtering. in 2016 IEEE Students’ Conference on Electrical, Electronics and Computer Science (SCEECS), Bhopal, 1–4 2016

  32. S. Wang, J. Zheng, H. Hu, B. Li, Naturalness preserved enhancement algorithm for non-uniform illumination images. IEEE Trans. Image Process. 22(9), 3538–3548 (2013)

    Article  Google Scholar 

  33. X. Zhang, B. Wandell, A spatial extension of CIELAB for digital color-image reproduction. J. Soc. Inf. Disp. 5, 61–63 (1997)

    Article  Google Scholar 

  34. K. Zuiderveld, Contrast limited adaptive histogram equalization, Chapter VIII, in Graphics Gems IV, ed. by P.S. Heckbert (Academic Press, Cambridge, 1994), pp. 474–485

    Chapter  Google Scholar 

Download references


We are very grateful to the all the reviewers for giving their precious time in order to review our work. We have found their suggestion very useful in improving the quality of this research article and have humbly incorporated all their suggestions.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Utkarsh Goel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goel, U., Gupta, B. & Tiwari, M. An Efficient Approach to Restore Naturalness of Non-uniform Illumination Images. Circuits Syst Signal Process 38, 3384–3398 (2019).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: