Skip to main content
Log in

Breaking the Limits: Redefining the Instantaneous Frequency

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The Carson and Fry introduced the concept of variable frequency as a generalization of the constant frequency. The instantaneous frequency (IF) is the time derivative of the instantaneous phase, and it is well defined only when this derivative is positive. If this derivative is negative, the IF creates problem because it does not provide any physical significance. This study proposes a mathematical solution and eliminates this problem by redefining the IF such that it is valid for all monocomponent, multicomponent signals of nonlinear and nonstationary nature. This is achieved by using the property of the multivalued inverse tangent function that provides base to ensure that the instantaneous phase is an increasing function. The efforts and understanding of all the methods based on the IF would improve significantly by using this proposed definition of the IF. We also demonstrate that the decomposition of a signal, using zero-phase filtering based on the well-established Fourier and filter theory, into a set of desired frequency bands with proposed IF produces accurate time–frequency–energy (TFE) distribution that reveals true nature of signal. Simulation results demonstrate the efficacy of the proposed IF that makes zero-phase filter-based decomposition most powerful for the TFE analysis of a signal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. B.P. Abbott et al., Observation of gravitational waves from a binary black hole merger. Phys. Rev. Lett. PRL 116, 061102 (2016)

    Article  MathSciNet  Google Scholar 

  2. B. Boashash, Estimating and interpreting the instantaneous frequency of a signal. Part 1: fundamentals. Proc. IEEE 80(4), 520–538 (1992)

    Article  Google Scholar 

  3. B. Boashash, Estimating and interpreting the instantaneous frequency of a signal. Part 2: algorithms and applications. Proc. IEEE 80(4), 540–568 (1992)

    Article  Google Scholar 

  4. B. Boashash, Time Frequency Signal Analysis and Processing: A Comprehensive Reference (Elsevier, Boston, 2003)

    Google Scholar 

  5. J. Carson, T. Fry, Variable frequency electric circuit theory with application to the theory of frequency modulation. Bell Syst. Tech. J. 16, 513–540 (1937)

    Article  MATH  Google Scholar 

  6. L. Cohen, Time–Frequency Analysis (Prentice Hall, Englewood Cliffs, 1995)

    Google Scholar 

  7. D.A. Cummings, R.A. Irizarry, N.E. Huang, T.P. Endy, A. Nisalak, K. Ungchusak, D.S. Burke, Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand. Nature 427, 344–347 (2004)

    Article  Google Scholar 

  8. I. Daubechies, J. Lu, H.T. Wu, Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool. Appl. Comput. Harmon. Anal. 30, 243–261 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. B. Demir, S. Erturk, Empirical mode decomposition of hyperspectral images for support vector machine classification. IEEE Trans. Geosci. Remote Sens. 48(11), 4071–4084 (2010)

    Google Scholar 

  10. K. Dragomiretskiy, D. Zosso, Variational mode decomposition. IEEE Trans. Signal Process. 62(3), 531–544 (2014)

    Article  MathSciNet  Google Scholar 

  11. M. Feldman, Time-varying vibration decomposition and analysis based on the Hilbert transform. J. Sound Vib. 295(3–5), 518–530 (2006)

    Article  MATH  Google Scholar 

  12. D. Gabor, Theory of communication. Proc. IEE 93(III), 429–457 (1946)

    Google Scholar 

  13. J. Gilles, Empirical wavelet transform. IEEE Trans. Signal Process. 61(16), 3999–4010 (2013)

    Article  MathSciNet  Google Scholar 

  14. Z. He, Q. Wang, Y. Shen, M. Sun, Kernel sparse multitask learning for hyperspectral image classification with empirical mode decomposition and morphological wavelet-based features. IEEE Trans. Geosci. Remote Sens. 52(8), 5150–5163 (2014)

    Article  Google Scholar 

  15. F.B. Hildebrand, Advanced Calculus for Engineers (Prentice-Hall, Englewood Cliffs, 1949)

    MATH  Google Scholar 

  16. T.Y. Hou, Z. Shi, Adaptive data analysis via sparse time–frequency representation. Adv. Adapt. Data Anal. 3(1&2), 1–28 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. N.E. Huang, Z. Shen, S. Long, M. Wu, H. Shih, Q. Zheng, N. Yen, C. Tung, H. Liu, The empirical mode decomposition and Hilbert spectrum for non-linear and non-stationary time series analysis. Proc. R. Soc. A 454, 903–995 (1988)

    Article  MATH  Google Scholar 

  18. N.E. Huang, Z. Wu, A review on Hilbert–Huang transform: method and its applications to geophysical studies. Rev. Geophys. 46, 1–23 (2008). https://doi.org/10.1029/2007RG000228

    Article  Google Scholar 

  19. P. Jain, R.B. Pachori, An iterative approach for decomposition of multi-component non-stationary signals based on eigenvalue decomposition of the Hankel matrix. J. Frankl. Inst. 352(10), 4017–4044 (2015)

    Article  Google Scholar 

  20. Y. Li, S. Tong, Adaptive fuzzy output-feedback control of pure-feedback uncertain nonlinear systems with unknown dead-zone. IEEE Trans. Fuzzy Syst. 22(5), 1341–1347 (2014)

    Article  Google Scholar 

  21. Y. Li, S. Sui, S. Tong, Adaptive fuzzy control design for stochastic nonlinear switched systems with arbitrary switchings and unmodeled dynamics. IEEE Trans. Cybern. 47(2), 403–414 (2017)

    Google Scholar 

  22. P.J. Loughlin, B. Tacer, Comments on the interpretation of instantaneous frequency. IEEE Signal Process. Lett. 4(5), 123–125 (1997)

    Article  MATH  Google Scholar 

  23. D.P. Mandic, N. Rehman, Z. Wu, N.E. Huang, Empirical mode decomposition-based time–frequency analysis of multivariate signals. IEEE Signal Process. Mag. 30, 74–86 (2013)

    Article  Google Scholar 

  24. S. Meignen, V. Perrier, A new formulation for empirical mode decomposition based on constrained optimization. IEEE Signal Process. Lett. 14(12), 932–935 (2007)

    Article  Google Scholar 

  25. N. Rehman, D.P. Mandic, Multivariate empirical mode decomposition. Proc. R. Soc. A 466, 1291–1302 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  26. I.W. Selesnick, Resonance-based signal decomposition: a new sparsity-enabled signal analysis method. Signal Process. 91(12), 2793–2809 (2011)

    Article  Google Scholar 

  27. P. Singh, S.D. Joshi, R.K. Patney, K. Saha, The Hilbert spectrum and the energy preserving empirical mode decomposition. arXiv:1504.04104 [cs.IT] (2015)

  28. P. Singh, S.D. Joshi, R.K. Patney, K. Saha, Some studies on nonpolynomial interpolation and error analysis. Appl. Math. Comput. 244, 809–821 (2014)

    MathSciNet  MATH  Google Scholar 

  29. P. Singh, P.K. Srivastava, R.K. Patney, S.D. Joshi, K. Saha, Nonpolynomial spline based empirical mode decomposition, in 2013 International Conference on Signal Processing and Communication (ICSC). (2013), pp. 435–440

  30. P. Singh, S.D. Joshi, R.K. Patney, K. Saha, The linearly independent non orthogonal yet energy preserving (LINOEP) vectors. arXiv:1409.5710 [math.NA] (2014)

  31. P. Singh, Some studies on a generalized Fourier expansion for nonlinear and nonstationary time series analysis. Ph.D. thesis, Department of Electrical Engineering, IIT Delhi, India, 2016

  32. P. Singh, S.D. Joshi, R.K. Patney, K. Saha, The Fourier decomposition method for nonlinear and non-stationary time series analysis. Proc. R. Soc. A (2017). https://doi.org/10.1098/rspa.2016.0871

    Google Scholar 

  33. P. Singh, Time–frequency analysis via the Fourier representation. arXiv:1604.04992 [cs.IT] (2016)

  34. P. Singh, S.D. Joshi, Some studies on multidimensional Fourier theory for Hilbert transform, analytic signal and space–time series analysis. arXiv:1507.08117 [cs.IT] (2015)

  35. P. Singh, LINOEP vectors, spiral of Theodorus, and nonlinear time-invariant system models of mode decomposition. arXiv:1509.08667 [cs.IT] (2015)

  36. P. Singh, S.D. Joshi, R.K. Patney, K. Saha, Fourier-based feature extraction for classification of EEG signals using EEG rhythms. Circuits Syst. Signal Process. 35(10), 3700–3715 (2016)

    Article  MathSciNet  Google Scholar 

  37. B. Van der Pol, The fundamental principles of frequency modulation. Proc. IEE 93(111), 153–158 (1946)

    MathSciNet  Google Scholar 

  38. J. Ville, Theorie et application de la notion de signal analytic, Cables et Transmissions 2A(1), 61–74, Paris, France, 1948 (Translation by I. Selin, Theory and applications of the notion of complex signal, Report T-92, RAND Corporation, Santa Monica, CA)

  39. Y. Wang, J. Orchard, Fast Discrete orthonormal stockwell transform. SIAM J. Sci. Comput. 31(5), 4000–4012 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  40. Z. Wu, N.E. Huang, Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009)

    Article  Google Scholar 

  41. W.X. Yang, Interpretation of mechanical signals using an improved Hilbert–Huang transform. Mech. Syst. Signal Process. 22, 1061–1071 (2008)

    Article  Google Scholar 

  42. http://in.mathworks.com/help/matlab/ref/unwrap.html

  43. http://www.vibrationdata.com/elcentro.htm

  44. https://www.researchgate.net/publication/307606777_MATLABCodeOfBreakingTheLimitsRedefiningTheIF

  45. https://losc.ligo.org/events/GW150914/

Download references

Acknowledgements

Author would like to show his gratitude to the Prof. S. D. Joshi (IITD), Prof. R. K. Pateny (IITD), and Dr. Kaushik Saha (CTO, Samsung R&D Institute India—Delhi) for sharing their wisdom and expertise during this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pushpendra Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, P. Breaking the Limits: Redefining the Instantaneous Frequency. Circuits Syst Signal Process 37, 3515–3536 (2018). https://doi.org/10.1007/s00034-017-0719-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0719-y

Keywords

Navigation