Skip to main content
Log in

A Speckle Noise Removal Method

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

During formation of echocardiographic images, speckle noise is introduced, which diminishes important information present in an image and effects physician’s capability to interpret image correctly. In the literature, many techniques have been proposed to remove unwanted noise from the image. In this paper, an intelligent denoising algorithm for echocardiographic images has been proposed, which first divides input image into different regions, namely smooth, texture and edge, using coefficient of variation. Fuzzy logic is used to draw boundaries between these image regions. Average filter and fractional integral filters are deployed to denoise pixels of various regions. Selection of filter depends on the characteristics of a region. The proposed technique improves quality of denoised image by suppressing maximum noise and producing no artifacts. Simulation results show superiority of proposed methodology over state-of-the-art existing methodologies, visually and using quantitative measures i.e. mean square error, peak signal to noise, edge preservation index, correlation coefficient and structure similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J. Babu, J. Jaganath, G.F. Sudha, Adaptive speckle reduction in ultrasound images using fuzzy logic on coefficient of variation. Biomed. Signal Process. Control 23, 93–103 (2016). doi:10.1016/j.bspc.2015.08.001

    Article  Google Scholar 

  2. K. Binaee, R.P.R. Hasanzadeh, An ultrasound image enhancement method using local gradient based fuzzy similarity. Biomed. Signal Process. Control 13, 89–101 (2014). doi:10.1016/j.bspc.2014.03.013

    Article  Google Scholar 

  3. D. Cafagna, Fractional calculus: a mathematical tool from the past for present engineers. IEEE Ind. Electron. Mag. 1(2), 35–40 (2007). doi:10.1109/mie.2007.901479

    Article  MathSciNet  Google Scholar 

  4. H. Cheng, J. Tian, in First International Workshop on Education Technology and Computer Science IEEE Computer Society. Speckle reduction of synthetic aperture radar images based on fuzzy logic (2009), pp. 933–937. doi:10.1109/etcs.2009.212

  5. E. Farzana, M. Tanzid, K.M. Mohsin et al., in Proceedings of IEEE-TENCON. Adaptive bilateral filtering for despeckling of medical ultrasound images (Japan, 2010), pp. 1728–1733. doi:10.1109/tencon.2010.5686140

  6. V.S. Frost, J.A. Stiles, K.S. Shanmuqan et al., A model for radar images and its application to adaptive digital filtering of multiplicative noise. IEEE Trans. Pattern Anal. Mach. Intell. 2, 157–166 (1982). doi:10.1109/tpami.1982.4767223

    Article  Google Scholar 

  7. G. Huang, Y.F. Pu, Q.L. Chen, J.L. Zhou, Research on image denoising based on fractional order integral. Syst. Eng. Electron. 33(4), 926–932 (2011)

    MATH  Google Scholar 

  8. N. He, J.B. Wang, L.L. Zhang et al., An improved fractional-order differentiation model for image denoising. Signal Process. 112, 180–188 (2015). doi:10.1016/j.sigpro.2014.08.025

    Article  Google Scholar 

  9. J.R. Hu, Y.F. Pu, J.L. Zhou, A novel image denoising algorithm based on Riemann–Liouville definition. J. Comput. 6(7), 35–39 (2011). doi:10.4304/jcp.6.7.1332-1338

    Google Scholar 

  10. H.A. Jalab, R.W. Ibrahim, Fractional Alexander polynomials for image denoising. Signal Process. 107, 340–354 (2015). doi:10.1016/j.sigpro.2014.06.004

    Article  Google Scholar 

  11. S. Kempfle, Fractional calculus via functional calculus: theory and applications. Nonlinear Dyn. 29, 99–127 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  12. D.T. Kuan, A. Sawchuk, T.C. Strand et al., Adaptive restoration of images with speckle. IEEE Trans. Acoust. Speech Signal Process. 35(3), 373–383 (1987). doi:10.1109/tassp.1987.1165131

    Article  Google Scholar 

  13. J.S. Lee, Digital image enhancement and noise filtering by use of local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2, 165–168 (1980). doi:10.1109/tpami.1980.4766994

    Article  Google Scholar 

  14. B. Li, X. Wei, Image denoising and enhancement based on adaptive fractional calculus of small probability strategy. Neurocomputing 175, 704–714 (2016). doi:10.1016/j.neucom.2015.10.115

    Article  Google Scholar 

  15. J. Machado, V. Kiryakova, F. Mainardi, Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011). doi:10.1016/j.cnsns.2010.05.027

    Article  MathSciNet  MATH  Google Scholar 

  16. J.V. Manjon, P. Coupe, L. Marti-Bonmati, D.L. Collins et al., Adaptive non local means denoising of MR images with spatially varying noise levels. J. Magn. Reson. Imaging 31(1), 192–203 (2010)

    Article  Google Scholar 

  17. G. Parisa, H. Behnam, Z. Sani, Noise reduction of echocardiographic images based on temporal information. IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2014). doi:10.1109/tuffc.2014.2950

    Google Scholar 

  18. P. Perona, J. Malik, Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990). doi:10.1109/34.56205

    Article  Google Scholar 

  19. A. Saadia, R. Adnan, Fractional order integration and fuzzy logic based filter for denoising of echocardiographic image. Comput. Methods Programs Biomed. 137, 65–75 (2016)

    Article  Google Scholar 

  20. A. Saadia, R. Adnan, in The proceedings of IEEE International Conference of Signal and Image Processing (ICSIP). Echocardiography image enhancement using adaptive fractional order derivatives (Beijing, China, 2016), pp. 764–769

  21. D. Shao, Z. Ting, H. Jianfeng, Y. Sanli, X. Yan, D. Yangyang, Z. Shaoyun, in 2015 8th International Conference on Biomedical Engineering and Informatics (BMEI). Ultrasound speckle reduction based on fractional order differentiation (IEEE, 2015), pp. 121–125. doi:10.1109/BMEI.2015.7401485

  22. Q. Yang, C. Dali, Z. Tiebiao, C. YangQuan, Fractional calculus in image processing: a review. Fract. Calc. Appl. Anal. 19(5), 1222–1249 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayesha Saadia.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadia, A., Rashdi, A. A Speckle Noise Removal Method. Circuits Syst Signal Process 37, 2639–2650 (2018). https://doi.org/10.1007/s00034-017-0687-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0687-2

Keywords

Navigation