Circuits, Systems, and Signal Processing

, Volume 37, Issue 6, pp 2320–2356 | Cite as

Input-to-State Stability of Discrete-Time Delay Systems with Delayed Impulses



This paper investigates the input-to-state stability (ISS) of discrete-time delay systems with delayed impulses. By employing Lyapunov functions together with Razumikhin technique, a number of ISS criteria are obtained. It is shown that if the original impulse-free system has no ISS property, it can become input-to-state stable by adding certain impulsive controls which are stabilizing. Correspondingly, the original system without impulses can retain its ISS property with appropriate impulsive perturbations which are destabilizing. Then, robust ISS property for a class of uncertain discrete-time delay systems with delayed impulses is considered. Finally, some numerical examples are given to illustrate the effectiveness and the superiority of the results.


Input-to-state stability Lyapunov function Razumikhin technique Discrete-time delay system Delayed impulse 



The authors would like to thank the associate editor and the anonymous reviewers for their constructive comments and suggestions which improved the quality of the paper.


  1. 1.
    H. Akca, R. Alassar, V. Covachev, Z. Covacheva, E. Al-Zahrani, Continuous-time additive hopfield-type neural networks with impulses. J. Math. Anal. Appl. 290(2), 436–451 (2004)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    A. Anokhin, L. Berezansky, E. Braverman, Exponential stability of linear delay impulsive differential equations. J. Math. Anal. Appl. 193(3), 923–941 (1995)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    D. Bainov, P. Simeonov, Systems with Impulse Effect: Stability, Theory, and Applications (Ellis Horwood, Chichester, 1989)MATHGoogle Scholar
  4. 4.
    P. Balasubramaniam, V. Vembarasan, Robust stability of uncertain fuzzy BAM neural networks of neutral-type with Markovian jumping parameters and impulses. Comput. Math. Appl. 62(4), 1838–1861 (2011)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    E. Bonotto, LaSalle’s theorems in impulsive semidynamical systems. Nonlinear Anal. Theory Methods Appl. 71(5–6), 2291–2297 (2009)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    W.H. Chen, W.X. Zheng, Input-to-state stability and integral input-to-state stability of nonlinear impulsive systems with delays. Automatica 45(6), 1481–1488 (2009)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    W.H. Chen, W.X. Zheng, Exponential stability of nonlinear time-delay systems with delayed impulse effects. Automatica 47(5), 1075–1083 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    S. Dashkovskiy, M. Kosmykov, A. Mironchenko, L. Naujok, Stability of interconnected impulsive systems with and without time delays, using Lyapunov methods. Nonlinear Anal. Hybrid Syst. 6(3), 899–915 (2012)MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    S. Dashkovskiy, A. Mironchenko, Input-to-state stability of nonlinear impulsive systems. SIAM J. Control Opt. 51(3), 1962–1987 (2013)MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Z. Feng, W.X. Zheng, L. Wu, Reachable set estimation of T–S fuzzy systems with time-varying delay. IEEE Trans. Fuzzy Syst. (2016). doi: 10.1109/TFUZZ.2016.2586945
  11. 11.
    J. Gallier, Schur complements and applications. In: Geometric Methods and Applications (Springer, 2011), pp. 431–437Google Scholar
  12. 12.
    Z.H. Guan, J. Huang, G. Chen, M. Jian, On the stability of networked impulsive control systems. Int. J. Robust Nonlinear Control 22(17), 1952–1968 (2012)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Y. Han, Y. Kao, C. Gao, Robust sliding mode control for uncertain discrete singular systems with time-varying delays and external disturbances. Automatica 75, 210–216 (2017)MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    J.P. Hespanha, D. Liberzon, A.R. Teel, Lyapunov conditions for input-to-state stability of impulsive systems. Automatica 44(11), 2735–2744 (2008)MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    Z.P. Jiang, Y. Wang, Input-to-state stability for discrete-time nonlinear systems. Automatica 37(6), 857–869 (2001)MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    A. Khadra, X. Liu, X. Shen, Impulsively synchronizing chaotic systems with delay and applications to secure communication. Automatica 41(9), 1491–1502 (2005)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    A. Khadra, X. Liu, X. Shen, Analyzing the robustness of impulsive synchronization coupled by linear delayed impulses. IEEE Trans. Autom. Control 54(4), 923–928 (2009)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    O.M. Kwon, M.J. Park, J.H. Park, S.M. Lee, E.J. Cha, Improved delay-dependent stability criteria for discrete-time systems with time-varying delays. Circuits Syst. Signal Process. 32(4), 1949–1962 (2013)MathSciNetCrossRefGoogle Scholar
  19. 19.
    D.S. Laila, A. Astolfi, Input-to-state stability for discrete-time time-varying systems with applications to robust stabilization of systems in power form. Automatica 41(11), 1891–1903 (2005)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    H. Li, Y. Gao, L. Wu, H. Lam, Fault detection for T–S fuzzy time-delay systems: delta operator and input-output methods. IEEE Trans. Cybern. 45(2), 229–241 (2015)CrossRefGoogle Scholar
  21. 21.
    P. Li, J. Cao, Z. Wang, Robust impulsive synchronization of coupled delayed neural networks with uncertainties. Phys. A 373, 261–272 (2007)CrossRefGoogle Scholar
  22. 22.
    X. Li, M. Bohner, C.K. Wang, Impulsive differential equations: periodic solutions and applications. Automatica 52, 173–178 (2015)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    X. Li, J. Wu, Stability of nonlinear differential systems with state-dependent delayed impulses. Automatica 64, 63–69 (2016)MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    Z.G. Li, Y.C. Soh, C. Wen, Robust stability of quasi-periodic hybrid dynamic uncertain systems. IEEE Trans. Autom. Control 46(1), 107–111 (2001)MathSciNetCrossRefMATHGoogle Scholar
  25. 25.
    D. Lin, X. Li, D. ORegan, Stability analysis of generalized impulsive functional differential equations. Math. Comput. Modell. 55(5), 1682–1690 (2012)MathSciNetCrossRefMATHGoogle Scholar
  26. 26.
    B. Liu, D.J. Hill, Input-to-state stability for discrete time-delay systems via the Razumikhin technique. Syst. Control Lett. 58(8), 567–575 (2009)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    B. Liu, D.J. Hill, Uniform stability and ISS of discrete-time impulsive hybrid systems. Nonlinear Anal. Hybrid Syst. 4(2), 319–333 (2010)MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    B. Liu, H. Marquez, Quasi-exponential input-to-state stability for discrete-time impulsive hybrid systems. Int. J. Control 80(4), 540–554 (2007)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    J. Liu, X. Liu, W.C. Xie, Input-to-state stability of impulsive and switching hybrid systems with time-delay. Automatica 47(5), 899–908 (2011)MathSciNetCrossRefMATHGoogle Scholar
  30. 30.
    X. Liu, P. Stechlinski, Hybrid control of impulsive systems with distributed delays. Nonlinear Anal. Hybrid Syst. 11, 57–70 (2014)MathSciNetCrossRefMATHGoogle Scholar
  31. 31.
    R.C. Loxton, K.L. Teo, V. Rehbock, W. Ling, Optimal switching instants for a switched-capacitor DC/DC power converter. Automatica 45(4), 973–980 (2009)MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    M.S. Mahmoud, F.M. Al-Sunni, Y. Shi, Switched discrete-time delay systems: delay-dependent analysis and synthesis. Circuits Syst. Signal Process. 28(5), 735–761 (2009)MathSciNetCrossRefMATHGoogle Scholar
  33. 33.
    P. Naghshtabrizi, J.P. Hespanha, A.R. Teel, Exponential stability of impulsive systems with application to uncertain sampled-data systems. Syst. Control Lett. 57(5), 378–385 (2008)MathSciNetCrossRefMATHGoogle Scholar
  34. 34.
    D. Nešić, A.R. Teel, Input-to-state stability of networked control systems. Automatica 40(12), 2121–2128 (2004)Google Scholar
  35. 35.
    I.R. Petersen, A stabilization algorithm for a class of uncertain linear systems. Syst. Control Lett. 8(4), 351–357 (1987)MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    J. Qiu, Y. Wei, H.R. Karimi, New approach to delay-dependent \(H_\infty \) control for continuous-time Markovian jump systems with time-varying delay and deficient transition descriptions. J. Frankl. Inst. 352(1), 189–215 (2015)CrossRefMATHGoogle Scholar
  37. 37.
    G. Rajchakit, Switching design for the asymptotic stability and stabilization of nonlinear uncertain stochastic discrete-time systems. Int. J. Nonlinear Sci. Numer. Simul. 14(1), 33–44 (2013)MathSciNetGoogle Scholar
  38. 38.
    E.D. Sontag, Smooth stabilization implies coprime factorization. IEEE Trans. Autom. Control 34(4), 435–443 (1989)MathSciNetCrossRefMATHGoogle Scholar
  39. 39.
    E.D. Sontag, Y. Wang, On characterizations of the input-to-state stability property. Syst. Control Lett. 24(5), 351–359 (1995)MathSciNetCrossRefMATHGoogle Scholar
  40. 40.
    W. Sun, S. Tang, H. Gao, J. Zhao, Two time-scale tracking control of nonholonomic wheeled mobile robots. IEEE Trans. Control Syst. Technol. 24(6), 2059–2069 (2016)CrossRefGoogle Scholar
  41. 41.
    W. Sun, Y. Zhao, J. Li, L. Zhang, H. Gao, Active suspension control with frequency band constraints and actuator input delay. IEEE Trans. Ind. Electron. 59(1), 530–537 (2012)CrossRefGoogle Scholar
  42. 42.
    J. Suo, J. Sun, Asymptotic stability of differential systems with impulsive effects suffered by logic choice. Automatica 51, 302–307 (2015)MathSciNetCrossRefMATHGoogle Scholar
  43. 43.
    A.R. Teel, Connections between Razumikhin-type theorems and the ISS nonlinear small gain theorem. IEEE Trans. Autom. Control 43(7), 960–964 (1998)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    E.I. Verliest, A.F. Ivanov, Robust stability of systems with delayed feedback. Circuits Syst. Signal Process. 13(2–3), 213–222 (1994)MathSciNetCrossRefGoogle Scholar
  45. 45.
    C. Wang, Robust stabilization of uncertain stochastic systems with delay in control input. In: Advanced Materials Research, vol. 461 (Trans Tech Publ, 2012), pp. 40–43Google Scholar
  46. 46.
    H. Wang, S. Duan, C. Li, L. Wang, T. Huang, Stability of impulsive delayed linear differential systems with delayed impulses. J. Frankl. Inst. 352(8), 3044–3068 (2015)MathSciNetCrossRefGoogle Scholar
  47. 47.
    B. Wu, Y. Liu, J. Lu, New results on global exponential stability for impulsive cellular neural networks with any bounded time-varying delays. Math. Comput. Modell. 55(3–4), 837–843 (2012)MathSciNetCrossRefMATHGoogle Scholar
  48. 48.
    K. Wu, X. Ding, L. Wang, Stability and stabilization of impulsive stochastic delay difference equations. Discrete Dyn. Nat. Soc. 2010, 592036 (2010)Google Scholar
  49. 49.
    L. Xie, M. Fu, C. de Souza, \(H_{\infty }\) control and quadratic stabilization of systems with parameter uncertainty via output feedback. IEEE Trans. Autom. Control 37(8), 1253–1256 (1992)MathSciNetCrossRefMATHGoogle Scholar
  50. 50.
    H. Xu, Y. Chen, K.L. Teo, Global exponential stability of impulsive discrete-time neural networks with time-varying delays. Appl. Math. Comput. 217(2), 537–544 (2010)MathSciNetMATHGoogle Scholar
  51. 51.
    S. Yang, B. Shi, S. Hao, Input-to-state stability for discrete-time nonlinear impulsive systems with delays. Int. J. Robust Nonlinear Control 23(4), 400–418 (2013)MathSciNetCrossRefMATHGoogle Scholar
  52. 52.
    F. Yao, J. Cao, P. Cheng, L. Qiu, Generalized average dwell time approach to stability and input-to-state stability of hybrid impulsive stochastic differential systems. Nonlinear Anal. Hybrid Syst. 22, 147–160 (2016)MathSciNetCrossRefMATHGoogle Scholar
  53. 53.
    D. Yue, J. Fang, S. Won, Delay-dependent robust stability of stochastic uncertain systems with time delay and markovian jump parameters. Circuits Syst. Signal Process. 22(4), 351–365 (2003)MathSciNetCrossRefMATHGoogle Scholar
  54. 54.
    Y. Zhang, Global exponential stability of delay difference equations with delayed impulses. Math. Comput. Simul. 132, 183–194 (2017)MathSciNetCrossRefGoogle Scholar
  55. 55.
    Y. Zhang, J. Sun, G. Feng, Impulsive control of discrete systems with time delay. IEEE Trans. Autom. Control 54(4), 830–834 (2009)MathSciNetCrossRefGoogle Scholar
  56. 56.
    Q. Zhu, pth moment exponential stability of impulsive stochastic functional differential equations with Markovian switching. J. Frankl. Inst. 351(7), 3965–3986 (2014)CrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Mathematical SciencesTongji UniversityShanghaiPeople’s Republic of China

Personalised recommendations