Advertisement

Circuits, Systems, and Signal Processing

, Volume 37, Issue 5, pp 2164–2178 | Cite as

Sparse Approximate Reconstruction Decomposed by Two Optimization Problems

  • Jun Wang
  • Xing Tao Wang
Article

Abstract

We propose a novel sparse signal reconstruction method aiming to directly minimize \(\ell _{0}\)-quasinorm. Based on the smoothed \(\ell _{0}\)-quasinorm, we show that there exists an unconstrained optimization problem such that both this problem and the basis pursuit problem are subproblems of the \(\ell _{0}\) minimization problem. Moreover, we can obtain a sparse solution to the \(\ell _{0}\) minimization by solving these two subproblems. In addition, we establish the relation between solutions to the \(\ell _{0}\) minimization and the least square solutions of a linear system. Finally, we present some numerical experiments to illustrate our results.

Keywords

\(\ell _{0}\) Minimization Smooth function Sparse signal Basis pursuit 

Notes

Acknowledgements

We thank the anonymous referees, associate editors, and editor-in-chief for their thoughtful and insightful comments, which improved the paper greatly. The research was supported partially by National Natural Science Foundation of China (Grant Nos. 10871056 and 10971150).

References

  1. 1.
    Md.Z. Ali Bhotto, M.O. Ahmad, M.N.S. Swamy, An improved fast iterative shrinkage thresholding algorithm for image deblurring. SIAM J. Imaging Sci. 8(3), 1640–1657 (2015)Google Scholar
  2. 2.
    A.S. Bandeira, D.G. Mixon, Certifying the restricted isometry property is hard. IEEE Trans. Inf. Theory 59(6), 3448–3450 (2013). doi: 10.1109/TIT.2013.2248414 MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    P. Bloomfield, S. William, Least Absolute Deviations: Theory, Applications and Algorithms (Springer, New York, 2012)zbMATHGoogle Scholar
  4. 4.
    T. Blumensath, M.E. Davies, Iterative thresholding for sparse approximations. J. Fourier Anal. Appl. 14(5–6), 629–654 (2008). doi: 10.1007/s00041-008-9035-z MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    T. Blumensath, M.E. Davies, Iterative hard thresholding for compressed sensing. Appl. Comput. Harmon. Anal. 27(3), 265–274 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Proc. Mag. 25(2), 21–30 (2008). doi: 10.1109/MSP.2007.914731 CrossRefGoogle Scholar
  7. 7.
    E.J. Candès, K.R. Justin, Quantitative robust uncertainty principles and optimally sparse decompositions. Found. Comput. Math. 6(2), 227–254 (2006). doi: 10.1007/s10208-004-0162-x MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    E.J. Candès, K.J. Justin, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006). doi: 10.1109/TIT.2005.862083 MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    E.J. Candès, K.R. Justin, T. Tao, Stable signal recovery from incomplete and inaccurate measurements. Commun. Pure Appl. Math. 59(8), 1207–1223 (2006). doi: 10.1002/cpa.20124 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005). doi: 10.1109/TIT.2005.858979 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    E.J. Candès, T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006). doi: 10.1109/TIT.2006.885507 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    S.S. Chen, D.L. Donoho, M.A. Saunders, Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006). doi: 10.1109/TIT.2006.871582 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    D.L. Donoho, De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995). doi: 10.1109/18.382009 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    D.L. Donoho, M. Elad, Optimally sparse representation in general (nonorthogonal) dictionaries via \(l_{1}\) minimization. Proc. Natl. Acad. Sci. 100(5), 2197–2202 (2003). doi: 10.1073/pnas.0437847100 MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    D.L. Donoho, X.M. Huo, Uncertainty principles and ideal atomic decomposition. IEEE Trans. Inf. Theory 47(7), 2845–2862 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M.F. Duarte, R.G. Baraniuk, Spectral compressive sensing. Appl. Comput. Harmon. Anal. 35(1), 111–129 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    S. Foucart, H. Rauhut, A Mathematical Introduction to Compressive Sensing (Birkhäuser, Basel, 2013)CrossRefzbMATHGoogle Scholar
  19. 19.
    I.F. Gorodnitsky, D.R. Bhaskar, Sparse signal reconstruction from limited data using FOCUSS: a re-weighted minimum norm algorithm. IEEE Trans. Signal Process. 45(3), 600–616 (1997). doi: 10.1109/78.558475 CrossRefGoogle Scholar
  20. 20.
    X.L. Huang, Y.P. Liu, L. Shi, Two-level \(\ell _{1}\) minimization for compressed sensing. Signal Process. 108, 459–475 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Jalali, M. Arian, From compression to compressed sensing. Appl. Comput. Harmon. Anal. 40(2), 352–385 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    F. Kittaneh, Singular values of companion matrices and bounds on zeros of polynomials. SIAM J. Matrix Anal. Appl. 16(1), 333–340 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    S.G. Mallat, Z.F. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993). doi: 10.1109/78.258082 CrossRefzbMATHGoogle Scholar
  24. 24.
    H. Mansour, S. Rayan, Recovery analysis for weighted \(\ell _{1}\)-minimization using the null space property. Appl. Comput. Harmon. Anal. 43(1), 23–38 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    H. Mohimani, B.Z. Massoud, C. Jutten, A fast approach for overcomplete sparse decomposition based on smoothed \(\ell _{0}\) norm. IEEE Trans. Signal Process. 57(1), 289–301 (2009). doi: 10.1109/TSP.2008.2007606 MathSciNetCrossRefGoogle Scholar
  26. 26.
    B.K. Natarajan, Sparse approximate solutions to linear systems. SIAM J. Comput. 24(2), 227–234 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    S.Z. Tao, B. Daniel, S.Z. Zhang, Local linear convergence of ISTA and FISTA on the LASSO problem. SIAM J. Optim. 26(1), 313–336 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    R. Tibshirani, Regression shrinkage and selection via the lasso. J. R. Stat. Soc. Ser. B (Methodol.) 58(1), 267–288 (1996)MathSciNetzbMATHGoogle Scholar
  30. 30.
    J.A. Tropp, A.C. Gilbert, Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53(12), 4655–4666 (2007). doi: 10.1109/TIT.2007.909108 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Y. Tsaig, D.L. Donoho, Extensions of compressed sensing. Signal Process. 86(3), 549–571 (2006)CrossRefzbMATHGoogle Scholar
  32. 32.
    B. Wang, L.L. Hu, J.Y. An et al., Recovery error analysis of noisy measurement in compressed sensing. Circ. Syst. Signal Process. 36(1), 137–155 (2017). doi: 10.1007/s00034-016-0296-5 MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Y. Wang, X.Q. Xiang et al., Compressed sensing based on trust region method. Circ. Syst. Signal Process. 36(1), 202–218 (2017). doi: 10.1007/s00034-016-0299-2 CrossRefzbMATHGoogle Scholar
  34. 34.
    D. Wei, Y. Li, Generalized sampling expansions with multiple sampling rates for lowpass and bandpass signals in the fractional fourier transform domain. IEEE Trans. Signal Process. 64(18), 4861–4874 (2016). doi: 10.1109/TSP.2016.2560148 MathSciNetCrossRefGoogle Scholar
  35. 35.
    D.L. Wu, W.P. Zhu, N.S. Swamy, The theory of compressive sensing matching pursuit considering time-domain noise with application to speech enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. 22(3), 682–696 (2014). doi: 10.1109/TASLP.2014.2300336 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of MathematicsHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations