Skip to main content
Log in

A 139 nW, 67 \(\hbox {ppm}/^\circ \hbox {C}\) BJT-CMOS-Based Voltage Reference Circuit

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this work, a low-power voltage reference circuit has been developed using the principle that a thermal compensation of the threshold voltage of a diode-connected nMOSFET can be obtained by using the PTAT current. The proposed circuit is designed using \(0.18\,\upmu \hbox {m}\) standard CMOS technology for the industrial temperature range of \(-40\) to \(+85\,^\circ \hbox {C}\). The measurements have been done over a set of 10 samples in the given temperature range. The measured results show that the proposed circuit is capable of working in the supply voltage range of 1.2–1.8 V with the mean line sensitivity and total current consumption of 0.64%/V and \(115.4\,\hbox {nA}\), respectively, at \(22.5\,^\circ \hbox {C}\). The measured mean reference voltage obtained from the circuit is 435 mV with the mean temperature coefficient of \(67\,\hbox {ppm}{/}^\circ \hbox {C}\) . The measured noise density at \(22.5\,^\circ \hbox {C}\) without any filtering capacitor is \(42\,\upmu \hbox {V}{/}\sqrt{\text {Hz}}\) at 100 Hz. The active area of the circuit is \(0.01008\,\hbox {mm}^2\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, M. Ayyash, Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  2. H. Banba, H. Shiga, A. Umezawa, T. Miyaba, T. Tanzawa, S. Atsumi, K. Sakui, A CMOS bandgap reference circuit with sub-1-V operation. IEEE J. Solid-State Circuits 34(5), 670–674 (1999)

    Article  Google Scholar 

  3. R.J. Baker, CMOS: Circuit Design, Layout, and Simulation (Wiley-IEEE Press, New York, 2004)

    Google Scholar 

  4. P. Brokaw, United States Patent 4,250,445. IEE Solid-State Circuits Mag. 5(3), 37–41 (2013)

    Article  Google Scholar 

  5. P. Changhae, J.P. John, K. Klein, J. Teplik, J. Caravella, J. Whitfield, K. Papworth, C. Sunny, Reversal of temperature dependence of integrated circuits operating at very low voltages, in Proceedings of International Electron Devices Meeting, pp. 71–74, Washington DC, USA (1995)

  6. B. Chatterjee, N. Modak, A. Amaravati, D. Mistry, D. Das, M.S. Baghini, A sub-1V, 120 nW, PVT-variation tolerant, tunable and scalable voltage reference with 60 dB PSNA. IEEE Trans. Nanotechnol. 16(3), 406–410 (2017)

    Google Scholar 

  7. S.S. Chouhan, K. Halonen, Design and implementation of all MOS micro-power voltage reference circuit. Analog Integr. Circuits Signal Process. 80(3), 399406 (2014)

    Article  Google Scholar 

  8. D. Colombo, F. Werle, G. Wirth, S. Bampi, A CMOS 25.3 \(\text{ppm}/^\circ \text{ C }\) bandgap voltage reference using self-cascode composite transistor, in IEEE 3rd Latin American Symposium on Circuits and Systems (LASCAS), pp. 1–4, Playa del Carmen (2012)

  9. P. Cosmin Radu, Superior-Order Curvature-Correction Techniques for Voltage References (Springer, Berlin, 2009)

    Google Scholar 

  10. Q. Duan, J. Roh, A 1.2-V 4.2ppm /\({}^\circ \text{ C }\) high-order curvature-compensated CMOS bandgap reference. IEEE Trans. Circuits Syst. I Regular Papers 62(3), 662–670 (2015)

    Article  MathSciNet  Google Scholar 

  11. D. El-Damak, A.P. Chandrakasan, A 10 nW1 \(\mu \text{ W }\) Power Management IC With Integrated Battery Management and Self-Startup for Energy Harvesting Applications. IEEE J. Solid-State Circuits 51(4), 943–954 (2016)

    Article  Google Scholar 

  12. I.M. Filanovsky, Voltage reference using mutual compensation of mobility and threshold voltage temperature effects, in Proceedings of Emerging Technologies for the 21st Century IEEE International Symposium on Circuits and Systems, vol. 5, pp. 197–200, Geneva (2000)

  13. L. Gengchen, R. Fuentes, H. Koser, K. Tolga, A self-powered power conditioning circuit for battery-free energy scavenging applications. Analog Integr. Circuits Signal Process. 83(2), 203–207 (2015)

    Article  Google Scholar 

  14. J. Gronicz, M. Pulkkinen, M. Yceta, K. Halonen, A \(2\mu \text{ A }\) temperature compensated MEMS-based real time clock with \(\pm 4\) ppm timekeeping accuracy, in IEEE International Symposium on Circuits and Systems (ISCAS), pp. 514–517, Melbourne VIC (2014)

  15. S. Ho-Jun, K. Choong-Ki, A temperature-stabilized SOI voltage reference based on threshold voltage difference between enhancement and depletion NMOSFETs. IEEE J. Solid-State Circuits 28(6), 671–677 (1993)

    Article  Google Scholar 

  16. P.H. Huang, H. Lin, Y.T. Lin, A simple subthreshold CMOS voltage reference circuit with channel- length modulation compensation. IEEE Trans. Circuits Syst. II Express Briefs 53(9), 882–885 (2006)

    Article  Google Scholar 

  17. S. Huang, S. Diao, L. Fujiang, A 0.7-V, \(8.9-\mu \text{ A }\) compact temperature-compensated CMOS subthreshold voltage reference with high reliability, Analog Integr. Circuits Signal Process. 91(1), 53–61 (2017)

    Article  Google Scholar 

  18. S. Jamali-Zavareh, J. Salomaa, M. Pulkkinen, S.S. Chouhan, K. Halonen, A \(1.3-\mu \text{ W }\) 12-bit incremental \({\varDelta \varSigma }\) ADC for energy harvesting sensor applications, in IEEE Nordic Circuits and Systems Conference (NORCAS), pp. 1–4, Copenhagen (2016)

  19. Y. Ji, C. Jeon, H. Son, B. Kim, H.J. Park, J.Y. Sim, A 9.3nW all-in-one bandgap voltage and current reference circuit, in IEEE International Solid-State Circuits Conference (ISSCC), pp. 100–101, San Francisco, CA (2017)

  20. J. Jiang, W. Shu, J.S. Chang, A 5.6 \(\text{ ppm }/{}^\circ \text{ C }\) Temperature Coefficient, 87-dB PSRR, Sub-1-V Voltage Reference in 65-nm CMOS Exploiting the Zero-Temperature-Coefficient Point. IEEE J. Solid-State Circuits 52(3), 623–633 (2017)

    Article  Google Scholar 

  21. W. Jianhui, C. Chao, S. Haifeng, H. Cheng, L. Hao, A high PSRR CMOS voltage reference with 1.2 V operation. Analog Integr. Circuits Signal Process. 77(1), 79–86 (2013)

    Article  Google Scholar 

  22. L. Ka Nang, P.K.T. Mok, A CMOS voltage reference based on weighted \({\varDelta }\text{ V }_{GS}\) for CMOS low-dropout linear regulators. IEEE J. Solid-State Circuits 38(1), 146–150 (2003)

    Article  Google Scholar 

  23. L. Lian-xi, M. Jun-Chao, M. Ning, T. Wei, Z. Zhang-ming, Y. Yin-tang, An ultra-low-power integrated RF energy harvesting system in 65-nm CMOS process. Circuit Syst. Signal Process. 35(2), 421–441 (2016)

    Article  Google Scholar 

  24. O.E. Mattia, H. Klimach, S. Bampi, Resistorless BJT bias and curvature compensation circuit at 3.4 nW for CMOS bandgap voltage references. Electron. Lett. 50(12), 863–864 (2014)

    Article  Google Scholar 

  25. K.L. Nang, P.K.T. Mok, A sub-1-V \(15-\text{ ppm }/^\circ \text{ C }\) CMOS bandgap voltage reference without requiring low threshold voltage device. IEEE J. Solid-State Circuits 37(4), 526–530 (2002)

    Article  Google Scholar 

  26. Temperature range summary, Maxim integrated. https://www.maximintegrated.com/en/markets/military-aerospace/temperature-range-summary.html

  27. K. Ueno, T. Hirose, T. Asai, Y. Amemiya, A 300 nW, 15 \(\text{ ppm }/{}^\circ \text{ C }\), 20 ppm/V CMOS voltage reference circuit consisting of subthreshold MOSFETs. IEEE J. Solid-State Circuits 44(7), 2047–2054 (2009)

    Article  Google Scholar 

  28. R. Widlar, New developments in IC voltage regulators, in IEEE International Solid-State Circuits Conference. Digest of Technical Papers, pp. 158–159, Philadelphia, USA (1970)

  29. M. Xin, M. Ying-qian, Z. Ze-kun, B. Zhang, Lu Yang, A 1.3 \(\text{ ppm }/{}^\circ \text{ C }\) BiCMOS bandgap voltage reference using piecewise-exponential compensation technique, Analog Integr. Circuits. Signal Process. 66(2), 171176 (2011)

    Google Scholar 

  30. K. Yang, H. Jiang, W. Yang, M. Frederic, C. Zhang, Z. Wang, L. Qingliang, J. Wen, Lifetime tracing of cardiopulmonary sounds with low-power sound sensor stick connected to wireless mobile network. Analog Integr. Circuits Signal Process. 81(3), 623–634 (2014)

    Article  Google Scholar 

  31. B. Yousefzadeh, S.H. Shalmany, K.A.A. Makinwa, A BJT-Based Temperature-to-Digital Converter With 60 mK (\(3\sigma \)) Inaccuracy From \(-55^\circ \text{ C }\) to +125 \({}^\circ \text{ C }\) in 0.16 \(\mu \text{ m }\) CMOS. IEEE J. Solid-State Circuits 52(4), 1044–1052 (2017)

    Article  Google Scholar 

  32. H. Zhang, Z. Xiao, X. Tan, H. Min, Low-power sub-1-V compact bandgap reference for passive RFID tags. Electron. Lett. 51(11), 815–816 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shailesh Singh Chouhan.

Additional information

This work is funded by the TEKES Project Dnro 3246/31/2014 of the Tekes-the Finnish Funding Agency for Innovation Finland.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chouhan, S.S., Halonen, K. A 139 nW, 67 \(\hbox {ppm}/^\circ \hbox {C}\) BJT-CMOS-Based Voltage Reference Circuit. Circuits Syst Signal Process 36, 5062–5078 (2017). https://doi.org/10.1007/s00034-017-0641-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0641-3

Keywords

Navigation