Skip to main content
Log in

Line Spectral Estimation Based on Compressed Sensing with Deterministic Sub-Nyquist Sampling

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

As an alternative to the traditional sampling theory, compressed sensing allows acquiring much smaller amount of data, still estimating the spectra of frequency-sparse signals accurately. However, the previous methods focus more on single measurement vector and default to using impractical random sampling. In this paper, we employ a deterministic and simple sampling scheme, that is, using three sub-Nyquist channels with pairwise coprime undersampling ratios. A multi-task model is utilized to unite the three-channel samples and address the multiple measurement vector problem. The model is solved by the proposed complex-valued multi-task algorithm based on variational Bayesian inference. Simulations show that this method is feasible and robust at quite low sampling rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. C.M. Bishop, M.E Tipping, Variational relevance vector machines. in Proceedings of the Sixteenth Conference on Uncertainty in Artificial Intelligence, (Morgan Kaufmann Publishers Inc., 2000), pp. 46–53

  2. S. Bourguignon, H. Carfantan, J. Idier, A sparsity-based method for the estimation of spectral lines from irregularly sampled data. IEEE J. Sel. Top. Signal Process. 1(4), 575–585 (2007)

    Article  Google Scholar 

  3. E.J. Candès, C. Fernandez-Granda, Towards a mathematical theory of super-resolution. Commun. Pure Appl. Math. 67(6), 906–956 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. E.J. Candès, M.B. Wakin, An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  6. Y. Chi, L.L. Scharf, A. Pezeshki, A.R. Calderbank, Sensitivity to basis mismatch in compressed sensing. IEEE Trans. Signal Process. 59(5), 2182–2195 (2011)

    Article  MathSciNet  Google Scholar 

  7. D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. J. Fang, J. Li, Y. Shen, H. Li, S. Li, Super-resolution compressed sensing: an iterative reweighted algorithm for joint parameter learning and sparse signal recovery. IEEE Signal Process. Lett. 21(6), 761–765 (2014)

    Article  Google Scholar 

  9. L. Hu, Z. Shi, J. Zhou, Q. Fu, Compressed sensing of complex sinusoids: an approach based on dictionary refinement. IEEE Trans. Signal Process. 60(7), 3809–3822 (2012)

    Article  MathSciNet  Google Scholar 

  10. S. Huang, H. Sun, L. Yu, H. Zhang, A class of deterministic sensing matrices and their application in harmonic detection. Circuits Syst. Signal Process. 35(11), 4183–4194 (2016)

    Article  MATH  Google Scholar 

  11. S. Huang, H. Zhang, H. Sun, L. Yu, L. Chen, Frequency estimation of multiple sinusoids with three sub-Nyquist channels. Signal Process. 139, 96–101 (2017)

    Article  Google Scholar 

  12. A. Jakobsson, P. Stoica, Combining Capon and APES for estimation of spectral lines. Circuits Syst. Signal Process. 19(2), 159–169 (2000)

    Article  MATH  Google Scholar 

  13. S. Ji, D. Dunson, L. Carin, Multitask compressive sensing. IEEE Trans. Signal Process. 57(1), 92–106 (2009)

    Article  MathSciNet  Google Scholar 

  14. Y.C. Liang, Adaptive frequency estimation of sinusoidal signals in colored non-Gaussian noises. Circuits Syst. Signal Process. 19(6), 517–533 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Malioutov, M. Çetin, A.S. Willsky, A sparse signal reconstruction perspective for source localization with sensor arrays. IEEE Trans. Signal Process. 53(8), 3010–3022 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. P. Pal, P.P. Vaidyanathan, Coprime sampling and the MUSIC algorithm. in Digital Signal Processing Workshop and IEEE Signal Processing Education Workshop, (2011), pp. 289–294

  17. S. Qin, Y.D. Zhang, M.G. Amin, Generalized coprime array configurations for direction-of-arrival estimation. IEEE Trans. Signal Process. 63(6), 1–1 (2015)

    Article  MathSciNet  Google Scholar 

  18. R.O. Schmidt, Multiple emitter location and signal parameter estimation. IEEE Trans. Antennas Propag. 34(3), 276–280 (1986)

    Article  Google Scholar 

  19. W. Si, X. Qu, Z. Qu, P. Zhao, Off-grid DOA estimation via real-valued sparse bayesian method in compressed sensing. Circuits Syst. Signal Process. 35(10), 1–17 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. G. Tang, B.N. Bhaskar, P. Shah, B. Recht, Compressed sensing off the grid. IEEE Trans. Inf. Theory 59(11), 7465–7490 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. M.E. Tipping, Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  22. J.A. Tropp, J.N. Laska, M.F. Duarte, J.K. Romberg, R.G. Baraniuk, Beyond Nyquist: efficient sampling of sparse bandlimited signals. IEEE Trans. Inf. Theory 56(1), 520–544 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. D.G. Tzikas, A.C. Likas, N.P. Galatsanos, The variational approximation for Bayesian inference. IEEE Signal Process. Mag. 25(6), 131–146 (2008)

    Article  Google Scholar 

  24. D.G. Tzikas, A.C. Likas, N.P. Galatsanos, Variational bayesian sparse kernel-based blind image deconvolution with student’s-t priors. IEEE Trans. Image Process. 18(4), 753–764 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  25. P.P. Vaidyanathan, P. Pal, Sparse sensing with co-prime samplers and arrays. IEEE Trans. Signal Process. 59(2), 573–586 (2011)

    Article  MathSciNet  Google Scholar 

  26. L. Wang, L. Zhao, G. Bi, C. Wan, Novel wideband DOA estimation based on sparse bayesian learning with dirichlet process priors. IEEE Trans. Signal Process. 64(2), 1–1 (2016)

    Article  MathSciNet  Google Scholar 

  27. Q. Wu, Y.D. Zhang, M.G. Amin, B. Himed, Complex multitask bayesian compressive sensing. in IEEE International Conference on Acoustics, Speech and Signal Processing, (2014), pp. 3375–3379

  28. Z. Yang, L. Xie, On gridless sparse methods for multi-snapshot direction of arrival estimation. Circuits Syst. Signal Process. 36(8), 3370–3384 (2017)

    Article  MATH  Google Scholar 

  29. Z. Yang, C. Zhang, L. Xie, Robustly stable signal recovery in compressed sensing with structured matrix perturbation. IEEE Trans. Signal Process. 60(9), 4658–4671 (2012)

    Article  MathSciNet  Google Scholar 

  30. H. Zhang, G. Bi, W. Yang, S.G. Razul, C.M.S. See, IF estimation of FM signals based on time-frequency image. IEEE Trans. Aerosp. Electr. Syst. 51(1), 326–343 (2015)

    Article  Google Scholar 

  31. H. Zhang, L. Yu, G.S. Xia, Iterative time-frequency filtering of sinusoidal signals with updated frequency estimation. IEEE Signal Process. Lett. 23(1), 139–143 (2016)

    Article  Google Scholar 

  32. H. Zhu, G. Leus, G.B. Giannakis, Sparsity-cognizant total least-squares for perturbed compressive sampling. IEEE Trans. Signal Process. 59(5), 2002–2016 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haijian Zhang.

Additional information

This work was supported by the National Natural Science Foundation of China with Grant Number 61501335.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, S., Sun, H., Zhang, H. et al. Line Spectral Estimation Based on Compressed Sensing with Deterministic Sub-Nyquist Sampling. Circuits Syst Signal Process 37, 1777–1788 (2018). https://doi.org/10.1007/s00034-017-0633-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0633-3

Keywords

Navigation