# A Novel Fractional Gradient-Based Learning Algorithm for Recurrent Neural Networks

Article

First Online:

- 466 Downloads
- 1 Citations

## Abstract

In this research, we propose a novel algorithm for learning of the recurrent neural networks called as the fractional back-propagation through time (FBPTT). Considering the potential of the fractional calculus, we propose to use the fractional calculus-based gradient descent method to derive the FBPTT algorithm. The proposed FBPTT method is shown to outperform the conventional back-propagation through time algorithm on three major problems of estimation namely nonlinear system identification, pattern classification and Mackey–Glass chaotic time series prediction.

## Keywords

Back-propagation through time (BPTT) Recurrent neural network (RNN) Gradient descent Fractional calculus Mackey–Glass chaotic time series Minimum redundancy and maximum relevance (mRMR)## References

- 1.J. Ahmad,
*Design of Efficient Adaptive Beamforming Algorithms for Novel Mimo Architectures*, Ph.D. Thesis, Iqra University, Karachi (2014)Google Scholar - 2.J. Amhad, M. Usman, S. Khan, I. Naseem, H.J. Syed, Rvp-flms: a robust variable power fractional lms algorithm, in
*2016 IEEE International Conference on Control System, Computing and Engineering (ICCSCE)*, IEEE, 2016Google Scholar - 3.J. An, S. Cho, Hand motion identification of grasp-and-lift task from electroencephalography recordings using recurrent neural networks, in
*2016 International Conference on Big Data and Smart Computing (BigComp)*, IEEE, 2016, pp. 427–429Google Scholar - 4.E.A. Antonelo, E. Camponogara, A. Plucenio, System identification of a vertical riser model with echo state networks. IFAC PapersOnLine
**48**(6), 304–310 (2015)CrossRefGoogle Scholar - 5.G. Bao, Z. Zeng, Global asymptotical stability analysis for a kind of discrete-time recurrent neural network with discontinuous activation functions. Neurocomputing
**193**, 242–249 (2016)CrossRefGoogle Scholar - 6.G.W. Bohannan, Analog fractional order controller in temperature and motor control applications. J. Vib. Control
**14**(9–10), 1487–1498 (2008)MathSciNetCrossRefGoogle Scholar - 7.J. Cervera, A. Baños, Automatic loop shaping in qft using crone structures. J. Vib. Control
**14**(9–10), 1513–1529 (2008)MathSciNetCrossRefzbMATHGoogle Scholar - 8.W. Chan, N. Jaitly, Q.V. Le, O. Vinyals, Listen, attend and spell: a neural network for large vocabulary conversational speech recognition, in
*2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2016Google Scholar - 9.N.I. Chaudhary, M.A.Z. Raja, M.S. Aslam, N. Ahmed, Novel generalization of volterra lms algorithm to fractional order with application to system identification. Neural Comput. Appl. (2016). doi: 10.1007/s00521-016-2548-5
- 10.X. Chen, T. Tan, X. Liu, P. Lanchantin, M. Wan, M.J. Gales, P.C. Woodland, Recurrent neural network language model adaptation for multi-genre broadcast speech recognition, in
*Proceedings of ISCA Interspeech*, Dresden, Germany, 2015, pp. 3511–3515Google Scholar - 11.L. Debnath, Recent applications of fractional calculus to science and engineering. Int. J. Math. Math. Sci.
**2003**(54), 3413–3442 (2003)MathSciNetCrossRefzbMATHGoogle Scholar - 12.K. Doya, S. Yoshizawa, Adaptive neural oscillator using continuous-time back-propagation learning. Neural Netw.
**2**(5), 375–385 (1989)CrossRefGoogle Scholar - 13.M. Fairbank, E. Alonso, D. Prokhorov, An equivalence between adaptive dynamic programming with a critic and backpropagation through time. IEEE Trans. Neural Netw. Learn. Syst.
**24**(12), 2088–2100 (2013)CrossRefGoogle Scholar - 14.Z. Gan, C. Li, R. Henao, D.E. Carlson, L. Carin, Deep temporal sigmoid belief networks for sequence modeling, in
*Advances in Neural Information Processing Systems 28*, eds. by C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (Curran Associates, Inc., 2015), pp. 2467–2475Google Scholar - 15.K. George, K. Subramanian, N. Sheshadhri, Improving transient response in adaptive control of nonlinear systems. IFAC PapersOnLine
**49**(1), 658–663 (2016)CrossRefGoogle Scholar - 16.T.R. Golub, D.K. Slonim, P. Tamayo, C. Huard, M. Gaasenbeek, J.P. Mesirov, H. Coller, M.L. Loh, J.R. Downing, M.A. Caligiuri et al., Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science
**286**(5439), 531–537 (1999)CrossRefGoogle Scholar - 17.I. Grau, G. Nápoles, I. Bonet, M.M. García, Backpropagation through time algorithm for training recurrent neural networks using variable length instances. Comput. Sist.
**17**(1), 15–24 (2013)Google Scholar - 18.S.O. Haykin,
*Neural Networks: A Comprehensive Foundation*(Prentice Hall PTR, Upper Saddle River, 1994)zbMATHGoogle Scholar - 19.M. Hermans, J. Dambre, P. Bienstman, Optoelectronic systems trained with backpropagation through time. IEEE Trans. Neural Netw. Learn. Syst.
**26**(7), 1545–1550 (2015)MathSciNetCrossRefGoogle Scholar - 20.M. Hermans, M. Soriano, J. Dambre, P. Bienstman, I. Fischer, Photonic delay systems as machine learning implementations. arXiv preprint arXiv:1501.02592 (2015)
- 21.H. Jaeger, Tutorial on training recurrent neural networks, covering BPPT, RTRL, EKF and the “echo state network” approach, GMD Report 159, (German National Research Center for Information Technology, 2002), p. 48Google Scholar
- 22.Y. Ji, G. Haffari, J. Eisenstein, A latent variable recurrent neural network for discourse relation language models. arXiv preprint arXiv:1603.01913 (2016)
- 23.H. Jia, Investigation into the effectiveness of long short term memory networks for stock price prediction. arXiv preprint arXiv:1603.07893 (2016)
- 24.A. Joulin, T. Mikolov, Inferring algorithmic patterns with stack-augmented recurrent nets, in
*Advances in Neural Information Processing Systems 28*, eds. by C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (Curran Associates, Inc., 2015), pp. 190–198Google Scholar - 25.G. Jumarie, Modified Riemann–Liouville derivative and fractional taylor series of nondifferentiable functions further results. Comput. Math. Appl.
**51**(9), 1367–1376 (2006)MathSciNetCrossRefzbMATHGoogle Scholar - 26.G. Jumarie, Table of some basic fractional calculus formulae derived from a modified Riemann–Liouville derivative for non-differentiable functions. Appl. Math. Lett.
**22**(3), 378–385 (2009)MathSciNetCrossRefzbMATHGoogle Scholar - 27.G. Jumarie, An approach via fractional analysis to non-linearity induced by coarse-graining in space. Nonlinear Anal. Real World Appl.
**11**(1), 535–546 (2010)MathSciNetCrossRefzbMATHGoogle Scholar - 28.G. Jumarie, On the derivative chain-rules in fractional calculus via fractional difference and their application to systems modelling. Open Phys.
**11**(6), 617–633 (2013)CrossRefGoogle Scholar - 29.C. Junhua, D. Baorong, S. Guangren, A novel time-series artificial neural network: a case study for forecasting oil production. Sci. J. Control Eng.
**6**(1), 1–7 (2016)Google Scholar - 30.F. Ken-ichi, N. Yuichi, Approximation of dynamical systems by continuous time recurrent neural networks. Neural Netw.
**6**, 801–806 (1993). doi: 10.1016/S0893-6080(05)80125-X CrossRefGoogle Scholar - 31.S. Khan, I. Naseem, R. Togneri, M. Bennamoun, A novel adaptive kernel for the rbf neural networks. Circuits Syst. Signal Process.
**36**(4), 1639–1653 (2017). doi: 10.1007/s00034-016-0375-7 - 32.M. Kleinz, T. Osler, A childs garden of fractional derivatives. The College Math Journal
**31**(2), 82–88 (2000)Google Scholar - 33.J. Koscak, R. Jaksa, P. Sincák, Prediction of temperature daily profile by stochastic update of backpropagation through time algorithm. J. Math. Syst. Sci.
**2**(4), 217–225 (2012)Google Scholar - 34.B. Krishna, K. Reddy, Active and passive realization of fractance device of order 1/2. Active Passive Electron. Compon.
**2008**, 369421 (2008). doi: 10.1155/2008/369421 - 35.Q.V. Le,
*A Tutorial on Deep Learning Part 2: Autoencoders, Convolutional Neural Networks and Recurrent Neural Networks*(Stanford University Department of Computer Science, CA, 2015)Google Scholar - 36.Q.V. Le, N. Jaitly, G.E. Hinton, A simple way to initialize recurrent networks of rectified linear units. arXiv preprint arXiv:1504.00941 (2015)
- 37.M.F. Lima, J.A.T. Machado, M.M. Crisóstomo, Experimental signal analysis of robot impacts in a fractional calculus perspective. JACIII
**11**(9), 1079–1085 (2007)CrossRefGoogle Scholar - 38.J. Lovoie, T.J. Osler, R. Tremblay, Fractional derivatives and special functions. SIAM Rev.
**18**(2), 240–268 (1976)MathSciNetCrossRefzbMATHGoogle Scholar - 39.R. Magin, M. Ovadia, Modeling the cardiac tissue electrode interface using fractional calculus. J. Vib. Control
**14**(9–10), 1431–1442 (2008)CrossRefzbMATHGoogle Scholar - 40.A. Mazumder, A. Rakshit, D. Tibarewala, A back-propagation through time based recurrent neural network approach for classification of cognitive eeg states, in
*2015 IEEE International Conference on Engineering and Technology (ICETECH)*, IEEE, 2015, pp. 1–5Google Scholar - 41.T. Mikolov, A. Joulin, S. Chopra, M. Mathieu, M. Ranzato, Learning longer memory in recurrent neural networks. arXiv preprint arXiv:1412.7753 (2014)
- 42.P.K. Muthukumar, A.W. Black, Recurrent neural network postfilters for statistical parametric speech synthesis. arXiv preprint arXiv:1601.07215 (2016)
- 43.R. Panda, M. Dash, Fractional generalized splines and signal processing. Signal Process.
**86**(9), 2340–2350 (2006)CrossRefzbMATHGoogle Scholar - 44.G. Parascandolo, H. Huttunen, T. Virtanen, Recurrent neural networks for polyphonic sound event detection in real life recordings. arXiv preprint arXiv:1604.00861 (2016)
- 45.H. Peng, F. Long, C. Ding, Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell.
**27**(8), 1226–1238 (2005)CrossRefGoogle Scholar - 46.Y. Pu, X. Yuan, K. Liao, J. Zhou, N. Zhang, X. Pu, Y. Zeng, A recursive two-circuits series analog fractance circuit for any order fractional calculus, in
*ICO20: Optical Information Processing*, 60271Y (2006). doi: 10.1117/12.668189 - 47.M.A.Z. Raja, N.I. Chaudhary, Two-stage fractional least mean square identification algorithm for parameter estimation of carma systems. Signal Process.
**107**, 327–339 (2015)CrossRefGoogle Scholar - 48.S. Ravuri, A. Stolcke, Recurrent neural network and lstm models for lexical utterance classification, in
*Sixteenth Annual Conference of the International Speech Communication Association*, 2015Google Scholar - 49.Y. Roudi, G. Taylor, Learning with hidden variables. Curr. Opin. Neurobiol.
**35**, 110–118 (2015)CrossRefGoogle Scholar - 50.J. Sabatier, O.P. Agrawal, J.T. Machado,
*Advances in Fractional Calculus*(Springer, Berlin, 2007)CrossRefzbMATHGoogle Scholar - 51.S. Saha, G. Raghava, Prediction of continuous b-cell epitopes in an antigen using recurrent neural network. Proteins Struct. Funct. Bioinform.
**65**(1), 40–48 (2006)CrossRefGoogle Scholar - 52.H. Sak, A. Senior, K. Rao, F. Beaufays, Fast and accurate recurrent neural network acoustic models for speech recognition. arXiv preprint arXiv:1507.06947 (2015)
- 53.B. Shoaib, I.M. Qureshi, Shafqatullah, Ihsanulhaq, Adaptive step-size modified fractional least mean square algorithm for chaotic time series prediction. Chin. Phys. B
**23**(5), 050503 (2014)Google Scholar - 54.L. Sommacal, P. Melchior, A. Oustaloup, J.M. Cabelguen, A.J. Ijspeert, Fractional multi-models of the frog gastrocnemius muscle. J. Vib. Control
**14**(9–10), 1415–1430 (2008)CrossRefzbMATHGoogle Scholar - 55.L. Sun, S. Kang, K. Li, H. Meng, Voice conversion using deep bidirectional long short-term memory based recurrent neural networks, in
*2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, IEEE, 2015, pp. 4869–4873Google Scholar - 56.W. Sun, H. Gao, O. Kaynak, Finite frequency \(h_{\infty }\) control for vehicle active suspension systems. IEEE Trans. Control Syst. Technol.
**19**(2), 416–422 (2011). doi: 10.1109/TCST.2010.2042296 CrossRefGoogle Scholar - 57.W. Sun, Y. Zhang, Y. Huang, H. Gao, O. Kaynak, Transient-performance-guaranteed robust adaptive control and its application to precision motion control systems. IEEE Trans. Ind. Electron.
**63**(10), 6510–6518 (2016)CrossRefGoogle Scholar - 58.W. Sun, Y. Zhao, J. Li, L. Zhang, H. Gao, Active suspension control with frequency band constraints and actuator input delay. IEEE Trans. Ind. Electron.
**59**(1), 530–537 (2012)CrossRefGoogle Scholar - 59.M. Sundermeyer, I. Oparin, J.L. Gauvain, B. Freiberg, R. Schluter, H. Ney, Comparison of feedforward and recurrent neural network language models, in
*2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, IEEE, 2013, pp. 8430–8434Google Scholar - 60.Y. Tan, Z. He, B. Tian, A novel generalization of modified lms algorithm to fractional order. IEEE Signal Process. Lett.
**22**(9), 1244–1248 (2015)CrossRefGoogle Scholar - 61.N.T. Vu, P. Gupta, H. Adel, H. Schütze, Bi-directional recurrent neural network with ranking loss for spoken language understanding, in
*2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, 2016Google Scholar - 62.M. Weilbeer, Efficient numerical methods for fractional differential equations and their analytical background. Papierflieger (Braunschweig University of Technology, Braunschweig, 2005)Google Scholar
- 63.C. Weng, D. Yu, S. Watanabe, B.H.F. Juang, Recurrent deep neural networks for robust speech recognition, in
*2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)*, IEEE, 2014, pp. 5532–5536Google Scholar - 64.T. Wigren, Recursive prediction error identification and scaling of non-linear state space models using a restricted black box parameterization. Automatica
**42**(1), 159–168 (2006)MathSciNetCrossRefzbMATHGoogle Scholar - 65.T. Wigren, J. Schoukens, Three free data sets for development and benchmarking in nonlinear system identification, in
*Control Conference (ECC), 2013 European*, IEEE, 2013, pp. 2933–2938Google Scholar - 66.R.J. Williams, J. Peng, An efficient gradient-based algorithm for on-line training of recurrent network trajectories. Neural Comput.
**2**(4), 490–501 (1990)CrossRefGoogle Scholar - 67.R.J. Williams, D. Zipser, Gradient-based learning algorithms for recurrent networks and their computational complexity. Backpropagation Theory Archit. Appl.
**1**, 433–486 (1995)Google Scholar - 68.W. Zaremba, I. Sutskever, O. Vinyals, Recurrent neural network regularization. arXiv preprint arXiv:1409.2329 (2014)
- 69.M. Zhang, Z. McCarthy, C. Finn, S. Levine, P. Abbeel, Learning deep neural network policies with continuous memory states. arXiv preprint arXiv:1507.01273 (2015)
- 70.S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang, P.H. Torr, Conditional random fields as recurrent neural networks, in
*Proceedings of the IEEE International Conference on Computer Vision*, 2015, pp. 1529–1537Google Scholar

## Copyright information

© Springer Science+Business Media New York 2017