Skip to main content
Log in

\(\varphi \hbox {FrMF}\): Fractional Fourier Matched Filter

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The paper develops a new interpretation of matched filtering of non-stationary signals in the fractional Fourier transform domain, which is beneficial for non-stationary/time–frequency signal processing applications. In the pursuit of establishing the theoretical and methodical foundation of matched filtering of non-stationary signal in the presence of non-stationary disturbance, the fractional-order signal processing technique is utilized. So in this context, it presents novel idea of improving the performance of non-stationary radar matched filtering in non-stationary disturbance as compared to classical approach. On the basis of derived analytical formulation, all theoretical results of proposed \(\varvec{\varphi }\)th fractional matched filter (\(\varvec{\varphi } \hbox {FrMF}\)) are corroborated by experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. L.B. Almeida, Product and convolution theorems for the fractional Fourier transform. IEEE Signal Process. Lett. 4(1), 15–17 (1997)

    Article  Google Scholar 

  2. M. Arif, A.A. Shaikh, I.A. Qureshi, The use of fractional Fourier transform for the extraction of overlapped harmonic chirp signals. Mehran Univ. Res. J. Eng. Technol. 33(2), 189–198 (2000)

    Google Scholar 

  3. Bat echolocation Chirp [Online]. http://dsp.rice.edu/software/bat-echolocation-chirp

  4. A. Bhandari, P. Marziliano, Sampling and reconstruction of sparse signals in fractional Fourier domain. IEEE Signal Process. Lett. 17(3), 221–224 (2010)

    Article  Google Scholar 

  5. B. Boashash, G. Azemi, A review of time–frequency matched filter design with application to seizure detection in multichannel newborn EEG. Digit. Signal Process. 28(1), 28–38 (2014)

    Article  Google Scholar 

  6. C. Capus, K. Brown, Short-time fractional Fourier methods for the time–frequency representation of chirp signals. J. Acoust. Soc. Am. 113(6), 3253–3263 (2003)

    Article  Google Scholar 

  7. S.A. Elgamel, C. Clemente, J.J. Soraghan, Radar matched filtering using fractional Fourier transform, in 2010 IET Conference on Sensor Signal Processing for Defence (2010)

  8. S.A. Elgamel, J.J. Soraghan, Enhanced monopulse radar tracking using filtering in fractional Fourier domain, in 2010 IEEE International Radar Conference (2010)

  9. R.A. Kennedy, P. Sadeghi, Hilbert Space Methods in Signal Processing (Cambridge University Press, Cambridge, 2013)

    Book  MATH  Google Scholar 

  10. S. Kumar, K. Singh, R. Saxena, Analysis of Dirichlet and generalized “hamming” window functions in the fractional Fourier transform domains. Signal Process. 91(3), 600–606 (2011)

    Article  MATH  Google Scholar 

  11. S. Kumar, K. Singh, R. Saxena, Closed-form analytical expression of fractional order differentiation in fractional Fourier transform domain. Circuits Syst. Signal Process. 32(4), 1875–1889 (2013)

    Article  MathSciNet  Google Scholar 

  12. S. Kumar, Analysis and design of non-recursive digital differentiators in fractional domain for signal processing applications. Ph.D. Dissertation, Thapar University, Patiala, India (2014)

  13. S. Kumar, R. Saxena, K. Singh, Fractional Fourier transform and fractional-order calculus-based image edge detection. Circuits Syst. Signal Process. 36(4), 1493–1513 (2017)

    Article  Google Scholar 

  14. M.A. Kutay, H.M. Ozaktas, O. Arikan, L. Onural, Optimal filtering in fractional Fourier domains. IEEE Trans. Signal Process. 45(5), 1129–1143 (1997)

    Article  Google Scholar 

  15. N. Levanon, E. Mozeson, Radar Signals (Wiley, New York, 2004)

    Book  Google Scholar 

  16. S. Liu, T. Shan, R. Tao, Y.D. Zhang, G. Zhang, F. Zhang, Y. Wang, Sparse discrete fractional Fourier transform and its applications. IEEE Trans. Signal Process. 62(24), 6582–6595 (2014)

    Article  MathSciNet  Google Scholar 

  17. Y. Liu, S. Fomel, Seismic data analysis using local time–frequency transform. Geophys. Prospect. 61(3), 516–525 (2013)

    Article  Google Scholar 

  18. K.H. Miah, D.K. Potter, Geophysical signal parameterization and filtering using the fractional Fourier transform. IEEE J. Sel. Topics Appl. Earth Obs. Remote Sens. 7(3), 845–852 (2014)

    Article  Google Scholar 

  19. R.L. Mitchell, A.W. Rihaczek, Matched-filter responses of the linear FM waveform. IEEE Trans. Aerospace Electron. Syst. 4(3), 417–432 (1968)

    Article  Google Scholar 

  20. V. Namias, The fractional order Fourier transform and its application to quantum mechanics. IMA J. Appl. Math. 25(3), 241–265 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  21. D.O. North, An analysis of the factors which determine signal/noise discrimination in pulsed-carrier systems. Proc. IEEE 51(7), 1016–1027 (1963)

    Article  Google Scholar 

  22. J.M. O’Toole, B. Boashash, Time-frequency detection of slowly varying periodic signals with harmonics: methods and performance evaluation. EURASIP J. Adv. Signal Process. (2011). doi:10.1155/2011/193797

    Google Scholar 

  23. H.M. Ozaktas, Z. Zalevsky, M.A. Kutay, The Fractional Fourier Transform with Applications in Optics and Signal Processing (Wiley, New York, 2001)

    Google Scholar 

  24. S.C. Pei, J.J. Ding, Relations between Gabor transforms and fractional Fourier transforms and their applications for signal processing. IEEE Trans. Signal Process. 55(10), 4839–4850 (2007)

    Article  MathSciNet  Google Scholar 

  25. S.C. Pei, J.J. Ding, Fractional Fourier transform, Wigner distribution, and filter design for stationary and nonstationary random processes. IEEE Trans. Signal Process. 58(8), 4079–4092 (2010)

    Article  MathSciNet  Google Scholar 

  26. S.C. Pei, W.L. Hsue, Random discrete fractional Fourier transform. IEEE Signal Process. Lett. 6(2), 1015–1018 (2009)

    Google Scholar 

  27. S.C. Pei, J.J. Ding, Relations between fractional operations and time–frequency distributions, and their applications. IEEE Trans. Signal Process. 49(8), 1638–1655 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. W. Qi, M. Pepin, A. Wright, R. Dunkel, T. Atwood, B. Santhanam, W. Gerstle, A.W. Doerry, M.M. Hayat, Reduction of vibration-induced artifacts in synthetic aperture radar imagery. IEEE Trans. Geosci. Remote Sens. 52(6), 3063–3073 (2014)

    Article  Google Scholar 

  29. M.A. Richards, Fundamentals of Radar Signal Processing (McGraw Hill, New York, 2005)

    Google Scholar 

  30. N. Ricker, The form and laws of propagation of seismic wavelets. Geophysics 18(1), 10–40 (1953)

    Article  Google Scholar 

  31. Y. Shin, S. Nam, C. An, E. Powers, Design of a time–frequency matched filter for detection of non-stationary signals, in 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 6 (2001), pp. 3585–3588

  32. K. Singh, S. Kumar, R. Saxena, Caputo-based fractional derivative in fractional Fourier transform domain. IEEE J. Emerg. Sel. Topics Circuits Syst. 3(3), 330–337 (2013)

    Article  Google Scholar 

  33. A.K. Singh, R. Saxena, On convolution and product theorems for FrFT. Wirel. Pers. Commun. 65(1), 189–201 (2012)

    Article  Google Scholar 

  34. G.L. Turin, An introduction to matched filters. IRE Trans. Inf. Theory 6(3), 311–329 (1960)

    Article  MathSciNet  Google Scholar 

  35. G.L. Turin, Minimax strategies for matched-filter detection. IEEE Trans. Commun. 23(11), 1370–1371 (1975)

    Article  Google Scholar 

  36. R. Torres, Z. Lizarazo, E. Torres, Fractional sampling theorem for \(\alpha \)-bandlimited random signals and its relation to the von Neumann ergodic theorem. IEEE Trans. Signal Process. 62(14), 3695–3705 (2014)

    Article  MathSciNet  Google Scholar 

  37. J. Tian, W. Cui, X.L. Lv, S. Wu, J.G. Hou, S.L. Wu, Joint estimation algorithm for multi-targets’ motion parameters. IET Radar Sonar Navig. 8(8), 939–945 (2014)

    Article  Google Scholar 

  38. R. Tao, F. Zhang, Y. Wang, Fractional power spectrum. IEEE Trans. Signal Process. 56(9), 4199–4206 (2008)

    Article  MathSciNet  Google Scholar 

  39. J.G. Vargas-Rubio, B. Santhanam, On the multiangle centered discrete fractional Fourier transform. IEEE Signal Process. Lett. 12(4), 273–276 (2005)

    Article  Google Scholar 

  40. A.I. Zayed, A convolution and product theorem for the fractional Fourier transform. IEEE Signal Process. Lett. 5(4), 101–103 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Editor-in-Chief, Associate Editor, and anonymous reviewers for their rigorous reviews, constructive comments, and valuable suggestions which greatly improved the quality and clarity of manuscript presentation. The work was supported by Science and Engineering Research Board (SERB) (No. SB/S3/EECE/0149/2016), Department of Science and Technology (DST), Government of India, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, S., Saxena, R. \(\varphi \hbox {FrMF}\): Fractional Fourier Matched Filter. Circuits Syst Signal Process 37, 49–80 (2018). https://doi.org/10.1007/s00034-017-0562-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0562-1

Keywords

Navigation