Skip to main content
Log in

New Protection Technique Against Unidirectional MEUs for FIR Filters

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

As technology shrinks, multiple bits upsets (MBUs) are becoming an important problem in the reliability of digital designs exposed to radiation effects. In this paper, a new technique for the implementation of finite impulse response (FIR) filters is presented that provides protection against single and multi-unidirectional bit upsets (SEUs and MBUs), which have a lower circuit complexity and cost than traditional techniques like N-modular redundancy. Most of previous works has focused on single event upset (SEU), however, in this paper, a coding method based on Berger codes are presented and implemented on FPGA-based FIR filter. As the Berger coding covers all unidirectional faults, the MBUs are also handled in the proposed schemes. The effectiveness of the proposed technique has been evaluated using a dynamic partial reconfiguration-based fault injection platform. The implementation results of the proposed mitigation technique in comparison with traditional TMR method and previous mitigation techniques in the literature represent the effectiveness in terms of protection and implementation cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. J.M. Berger, A note on error detection codes for asymmetric channels. Inf. Control 4(1), 68–73 (1961). doi:10.1016/S0019-9958(61)80037-5

    Article  MathSciNet  MATH  Google Scholar 

  2. S. Byonghyo, S.R. Sridhara, N.R. Shanbhag, Reliable low-power digital signal processing via reduced precision redundancy. IEEE Trans. Very Large Scale Integr. VLSI Syst. 12(5), 497–510 (2004). doi:10.1109/TVLSI.2004.826201

    Article  Google Scholar 

  3. S. Byonghyo, N.R. Shanbhag, Energy-efficient soft error-tolerant digital signal processing. IEEE Trans. Very Large Scale Integr. VLSI Syst. 14(4), 336–348 (2006). doi:10.1109/TVLSI.2006.874359

    Article  Google Scholar 

  4. W.K. Chen, Passive, Active, and Digital Filters (CRC Press, Boca Raton, 2005)

    Book  MATH  Google Scholar 

  5. M. Etzel, W. Jenkins, Redundant residue number systems for error detection and correction in digital filters. IEEE Trans. Acoust. Speech Signal Process. 28(5), 538–545 (1980). doi:10.1109/TASSP.1980.1163442

    Article  MathSciNet  MATH  Google Scholar 

  6. Z. Gao, W. Yang, X. Chen, M. Zhao, J. Wang, in Fault Missing Rate Analysis of the Arithmetic Residue Codes Based Fault-Tolerant FIR Filter Design. IEEE 18th International On-Line Testing Symposium (IOLTS) (2012), pp. 130–133

  7. Z. Gao, P. Reviriego, W. Pan, Z. Xu, M. Zhao, J. Wang, J.A. Maestro, Efficient arithmetic-residue-based SEU-tolerant FIR filter design. IEEE Trans. Circuits Syst. II Express Briefs 60(8), 497–501 (2013). doi:10.1109/TCSII.2013.2261183

    Article  Google Scholar 

  8. Z. Gao, P. Reviriego, W. Pan, Z. Xu, M. Zhao, J. Wang, J.A. Maestro, Fault tolerant parallel filters based on error correction codes. IEEE Trans. Very Large Scale Integr. VLSI Syst. 23(2), 384–387 (2015). doi:10.1109/TVLSI.2014.2308322

    Article  Google Scholar 

  9. Z. Gao, P. Reviriego, Z. Xu, X. Su, J. Wang, J.A. Maestro, Efficient coding schemes for fault-tolerant parallel filters. IEEE Trans. Circuits Syst. II Express Briefs 62(7), 666–670 (2015). doi:10.1109/TCSII.2015.2404219

    Article  Google Scholar 

  10. Y. Gu, F. Ding, Parameter estimation for a multivariable state space system with d-step state-delay. J. Frankl. Inst. 350(4), 724–736 (2013). doi:10.1016/j.jfranklin.2013.01.004

    Article  MathSciNet  MATH  Google Scholar 

  11. X. Kavousianos, D. Nikolos, G. Foukarakis, T. Gnardellis, New efficient totally self-checking Berger code checkers. Integr. VLSI J. 28(1), 101–118 (1999). doi:10.1016/S0167-9260(99)00013-9

    Article  Google Scholar 

  12. S.F. Liu, P. Reviriego, J.A. Maestro, Enhanced implementations of hamming codes to protect FIR filters. IEEE Trans. Nucl. Sci. 57(4), 2112–2118 (2010). doi:10.1109/TNS.2010.2051162

    Article  Google Scholar 

  13. J.C. Lo, S. Thanawastien, T.R.N. Rao, Berger check prediction for array multipliers and array dividers. IEEE Trans. Comput. 42(7), 892–896 (1993). doi:10.1109/12.237731

    Article  Google Scholar 

  14. M. Maniatakos, M.K. Michael, Y. Makris, Multiple-bit upset protection in microprocessor memory arrays using vulnerability-based parity optimization and interleaving. IEEE Trans. Very Large Scale Integr. VLSI Syst. 23(11), 2447–2460 (2015). doi:10.1109/TVLSI.2014.2365032

    Article  Google Scholar 

  15. R.H. Maurer, M.E. Fraeman, M.N. Martin, D.R. Roth, Harsh environments space radiation environment, effects, and mitigation. John Hopkins APL Tech. Dig. 28(1), 13 (2008)

    Google Scholar 

  16. A.V. Oppenheim, Discrete-Time Signal Processing, 3rd edn. (Pearson Education, London, 2010)

    Google Scholar 

  17. S. Pontarelli, G.C. Cardarilli, M. Re, A. Salsano, in Totally Fault Tolerant RNS Based FIR Filters. 14th IEEE International On-Line Testing Symposium (2008), pp. 192–194

  18. C. Radhakrishnan, W.K. Jenkins, Fault tolerance in transform-domain adaptive filters operating with real-valued signals. IEEE Trans. Circuits Syst. I Regul. Pap. 57(1), 166–178 (2010). doi:10.1109/TCSI.2009.2019402

    Article  MathSciNet  Google Scholar 

  19. T.R.N. Rao, G.L. Feng, M.S. Kolluru, J.C. Lo, Novel totally self-checking Berger code checker designs based on generalized Berger code partitioning. IEEE Trans. Comput. 42(8), 1020–1024 (1993). doi:10.1109/12.238498

    Article  Google Scholar 

  20. P. Reviriego, J.A. Maestro, O. Ruano, Efficient protection techniques against SEUs for adaptive filters: an echo canceller case study. IEEE Trans. Nucl. Sci. 55(3), 1700–1707 (2008). doi:10.1109/TNS.2008.924053

    Article  Google Scholar 

  21. P. Reviriego, C.J. Bleakley, J.A. Maestro, Structural DMR: a technique for implementation of soft-error-tolerant FIR filters. IEEE Trans. Circuits Syst. II Express Briefs 58(8), 512–516 (2011). doi:10.1109/TCSII.2011.2158750

    Article  MATH  Google Scholar 

  22. P. Reyes, P. Reviriego, J.A. Maestro, O. Ruano, in A New Protection Technique for Finite Impulse Response (FIR) Filters in the Presence of Soft Errors. IEEE International Symposium on Industrial, Electronics (2007), pp. 3328–3333

  23. P. Reyes, P. Reviriego, J.A. Maestro, O. Ruano, New protection techniques against SEUs for moving average filters in a radiation environment. IEEE Trans. Nucl. Sci. 54(4), 957–964 (2007). doi:10.1109/TNS.2007.892118

    Article  Google Scholar 

  24. L. Wanhammar, DSP Integrated Circuits (Elsevier, Amsterdam, 1999)

    Book  Google Scholar 

  25. W. Yang, Z. Gao, X. Chen, M. Zhao, J. Wang, Residue code based low cost SEU-tolerant fir filter design for OBP satellite communication systems. EURASIP J. Wirel. Commun. Netw. 2012(1), 174 (2012). doi:10.1186/1687-1499-2012-174

    Article  Google Scholar 

  26. B. Zagar, R. Redinbo, in Watchdog Parity Channels for Digital Filter Protection. Eighteenth International Symposium on Fault-Tolerant, Computing (1988), pp. 186–191

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Omidi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Omidi, R., Zarrabi, H. New Protection Technique Against Unidirectional MEUs for FIR Filters. Circuits Syst Signal Process 37, 367–382 (2018). https://doi.org/10.1007/s00034-017-0556-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0556-z

Keywords

Navigation