Advertisement

Circuits, Systems, and Signal Processing

, Volume 37, Issue 1, pp 98–111 | Cite as

Distributed Estimator-Based Fault Detection for Multi-agent Networks

  • Dan Zhao
  • Ming Chi
  • Zhi-Hong GuanEmail author
  • Yonghong Wu
  • Jie Chen
Article

Abstract

This paper focuses on the problem of fault detection (FD) for multi-agent networks when some follower agents are subjected to actuator or sensor faults. A distributed FD architecture is proposed by constructing a consensus-based estimator and the related residual. Using Lyapunov function method and Riccati equation, asymptotically stable condition for the novel estimator is derived, and the time-varying residual threshold for FD is determined. A numerical example is presented to illustrate the efficiency of the consensus-based approach for FD.

Keywords

Fault detection (FD) Consensus-based estimator Riccati equation Multi-agent networks 

References

  1. 1.
    H. Alwi, C. Edwards, Robust fault reconstruction for linear parameter varying systems using sliding mode observers. Int. J. Robust Nonlinear Control 24(14), 1947–1968 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Y. Cao, L. Zhang, C. Li, M.Z.Q. Chen, Observer-based consensus tracking of nonlinear agents in hybrid varying directed topology. IEEE Trans. Cybern. (2016). doi: 10.1109/TCYB.2016.2573138 Google Scholar
  3. 3.
    M.R. Davoodi, K. Khorasani, H.A. Talebi, H.R. Momeni, Distributed fault detection and isolation filter design for a network of heterogeneous multiagent systems. IEEE Trans. Control Syst. Technol. 22(3), 1061–1069 (2014)CrossRefGoogle Scholar
  4. 4.
    M.R. Davoodi, N. Meskin, K. Khorasani. Simultaneous fault detection and control design for a network of multi-agent systems, in 2014 IEEE European Control Conference, 2014, pp. 575–581Google Scholar
  5. 5.
    X. Feng, K.L. Butler-Purry, T. Zourntos, A multi-agent system framework for real-time electric load management in MVAC all-electric ship power systems. IEEE Trans. Power Syst. 30(3), 1327–1336 (2015)CrossRefGoogle Scholar
  6. 6.
    G.H.B. Foo, X. Zhang, D.M. Vilathgamuwa, A sensor fault detection and isolation method in interior permanent-magnet synchronous motor drives based on an extended Kalman filter. IEEE Trans. Indus. Electron. 60(8), 3485–3495 (2013)CrossRefGoogle Scholar
  7. 7.
    M.F. Ge, Z.H. Guan, B. Hu, D.X. He, R.Q. Liao, Distributed controller-estimator for target tracking of networked robotic systems under sampled interaction. Automatica 69, 410–417 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    L. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory (Society for Industrial and Applied Mathematics, Philadelphia, 1994)zbMATHGoogle Scholar
  9. 9.
    Z.H. Guan, B. Hu, M. Chi, D.X. He, X.M. Cheng, Guaranteed performance consensus in second-order multi-agent systems with hybrid impulsive control. Automatica 50(9), 2415–2418 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Z.H. Guan, Z.W. Liu, G. Feng, M. Jian, Impulsive consensus algorithms for second-order multi-agent networks with sampled information. Automatica 48(7), 1397–1404 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Y. Hong, J. Hu, L. Gao, Tracking control for multi-agent consensus with an active leader and variable topology. Automatica 42(7), 1177–1182 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    J. Hu, J. Cao, Hierarchical cooperative control for multi-agent systems with switching directed topologies. IEEE Trans. Neural Netw. Learn. Syst. 26(10), 2453–2463 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    M. Hu, J. Cao, A. Hu, Y. Yang, Y. Jin, A novel finite-time stability criterion for linear discrete-time stochastic system with applications to consensus of multi-agent system. Circuits Syst. Signal Process. 34(1), 41–59 (2015)CrossRefzbMATHGoogle Scholar
  14. 14.
    Y. Jiang, J. Liu, S. Wang, A consensus-based multi-agent approach for estimation in robust fault detection. ISA Trans. 53(5), 1562–1568 (2014)CrossRefGoogle Scholar
  15. 15.
    C. Keliris, M.M. Polycarpou, T. Parisini, A distributed fault detection filtering approach for a class of interconnected continuous-time nonlinear systems. IEEE Trans. Autom. Control 58(8), 2032–2047 (2013)CrossRefzbMATHGoogle Scholar
  16. 16.
    K.S. Lee, T.G. Park, New results on fault reconstruction using a finite-time converging unknown input observer. IET Control Theory Appl. 6(9), 1258–1265 (2012)MathSciNetCrossRefGoogle Scholar
  17. 17.
    W. Li, M.W. Spong, Unified cooperative control of multiple agents on a sphere for different spherical patterns. IEEE Trans. Autom. Control 59(5), 1283–1289 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Z. Li, Z. Duan, G. Chen, Dynamic consensus of linear multi-agent systems. IET Control Theory Appl. 5(1), 19–28 (2011)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Z. Li, Z. Duan, G. Chen, L. Huang, Consensus of multiagent systems and synchronization of complex networks: a unified viewpoint. IEEE Trans. Circuits Syst. I Regul. Papers 57(1), 213–224 (2010)MathSciNetCrossRefGoogle Scholar
  20. 20.
    X. Liao, C. Li, An LMI approach to asymptotical stability of multi-delayed neural networks. Phys. D Nonlinear Phenom. 200(1), 139–155 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    X. Liu, X. Gao, J. Han, Observer-based fault detection for high-order nonlinear multi-agent systems. J. Frankl. Inst. 353(1), 72–94 (2016)MathSciNetCrossRefGoogle Scholar
  22. 22.
    N. Meskin, K. Khorasani, Actuator fault detection and isolation for a network of unmanned vehicles. IEEE Trans. Autom. Control 54(4), 835–840 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    N. Meskin, K. Khorasani, C. Rabbath, A hybrid fault detection and isolation strategy for a network of unmanned vehicles in presence of large environmental disturbances. IEEE Trans. Control Syst. Technol. 18(6), 1422–1429 (2010)Google Scholar
  24. 24.
    K. Michail, K.M. Deliparaschos, S.G. Tzafestas, A.C. Zolotas, AI-based actuator/sensor fault detection with low computational cost for industrial applications. IEEE Trans. Control Syst. Technol. 24(1), 293–301 (2016)CrossRefGoogle Scholar
  25. 25.
    P.F. Odgaard, J. Stoustrup, M. Kinnaert, Fault-tolerant control of wind turbines: a benchmark model. IEEE Trans. Control Syst. Technol. 21(4), 1168–1182 (2013)CrossRefGoogle Scholar
  26. 26.
    I. Shames, A.M.H. Teixeira, H. Sandberg, K.H. Johansson, Distributed fault detection for interconnected second-order systems. Automatica 47(12), 2757–2764 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    H.A. Talebi, K. Khorasani, A neural network-based multiplicative actuator fault detection and isolation of nonlinear systems. IEEE Trans. Control Syst. Technol. 21(3), 842–851 (2013)CrossRefGoogle Scholar
  28. 28.
    X. Wan, H. Fang, Fault detection for networked nonlinear systems with time delays and packet dropouts. Circuits Syst. Signal Process. 31(1), 329–345 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    X. Wan, H. Fang, S. Fu, Observer-based fault detection for networked discrete-time infinite-distributed delay systems with packet dropouts. Appl. Math. Model. 36(1), 270–278 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    B. Wang, Z.H. Guan, F.S. Yuan, Optimal tracking and two-channel disturbance rejection under control energy constraint. Automatica 47(4), 733–738 (2011)Google Scholar
  31. 31.
    X. Zhang, Decentralized fault detection for a class of large-scale nonlinear uncertain systems. in 2010 IEEE American Control Conference, 2010, pp. 5650–5655Google Scholar
  32. 32.
    Y. Zhang, H. Fang, Z. Liu, Fault detection for nonlinear networked control systems with Markov data transmission pattern. Circuits Syst. Signal Process. 31(4), 1343–1358 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Dan Zhao
    • 1
  • Ming Chi
    • 1
  • Zhi-Hong Guan
    • 1
    Email author
  • Yonghong Wu
    • 2
  • Jie Chen
    • 3
  1. 1.College of AutomationHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  2. 2.School of ScienceWuhan University of TechnologyWuhanPeople’s Republic of China
  3. 3.School of ScienceHubei University of TechnologyWuhanPeople’s Republic of China

Personalised recommendations