Skip to main content
Log in

FPGA Implementation of a Phase-Aware Single-Channel Speech Enhancement System

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a real-time architecture of an improved single-channel speech enhancement system based on phase-aware multi-band complex spectral subtraction. Using the proposed technique, the short-time spectral magnitude of the clean speech signal is estimated by considering the spectral phase of the speech and noise signal components. Moreover, the estimated spectral phase of the clean speech signal is also utilized for signal reconstruction in the time domain. The proposed system is made of the basic preprocessing module followed by an short-time Fourier transform analyzer, a noise power estimator based on improved minima controlled recursive array, a phase estimator unit and an overlap-add synthesis unit. The proposed architecture is implemented on a Field Programmable Gate Array (FPGA) using the Xilinx ISE tool. The overall resource utilization and the maximum operating frequency are also computed for a Virtex-6 FPGA chip. It has been experimentally shown that the proposed speech enhancement framework performs better than the other existing standard benchmark methods in terms of various quality and intelligibility assessment metrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Andraka, A survey of CORDIC algorithms for FPGA based computers, in Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field Programmable Gate Arrays (ACM, 1998), pp. 191–200

  2. M. Bahoura, H. Ezzaidi, FPGA-implementation of parallel and sequential architectures for adaptive noise cancelation. Circuits Syst. Signal Process. 30(6), 1521–1548 (2011). doi:10.1007/s00034-011-9310-0

    Article  Google Scholar 

  3. M. Bahoura, H. Ezzaidi, Implementation of spectral subtraction method on FPGA using high-level programming tool, in Proceedings of the 2012 24th International Conference on Microelectronics (ICM), IEEE (2012), pp. 1–4

  4. M. Berouti, R. Schwartz, J. Makhoul, Enhancement of speech corrupted by acoustic noise, in IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP’79, vol. 4. IEEE (1979), pp. 208–211

  5. S. Boll, Suppression of acoustic noise in speech using spectral subtraction. IEEE Trans. Acoust. Speech Signal Process. 27(2), 113–120 (1979)

    Article  Google Scholar 

  6. I. Cohen, B. Berdugo, Noise estimation by minima controlled recursive averaging for robust speech enhancement. IEEE Signal Process. Lett. 9(1), 12–15 (2002)

    Article  Google Scholar 

  7. R.E. Crochiere, A weighted overlap-add method of short-time fourier analysis/synthesis. IEEE Trans. Acoust. Speech Signal Process. 28(1), 99–102 (1980)

    Article  Google Scholar 

  8. G. Doblinger, Computationally efficient speech enhancement by spectral minima tracking in subbands, in Proc. EUROSPEECH, vol. 2, 1995, pp. 1513–1516

  9. Y. Ephraim, D. Malah, Speech enhancement using a minimum mean-square error log-spectral amplitude estimator. IEEE Trans. Acoust. Speech Signal Process. 33(2), 443–445 (1985)

    Article  Google Scholar 

  10. J.S. Garofolo, L.F Lamel, W.M. Fisher, J.G. Fiscus, D.S. Pallett, Darpa timit acoustic-phonetic continous speech corpus CD-ROM. NIST speech disc 1-1.1, in NASA STI/Recon Technical Report N 93 (1993)

  11. T. Gerkmann, M. Krawczyk-Becker, J. Le Roux, Phase processing for single-channel speech enhancement: history and recent advances. IEEE Signal Process. Mag. 32(2), 55–66 (2015). doi:10.1109/MSP.2014.2369251

    Article  Google Scholar 

  12. M.K. Hasan, S. Salahuddin, M.R. Khan, A modified a priori snr for speech enhancement using spectral subtraction rules. IEEE Signal Process. Lett. 11(4), 450–453 (2004)

    Article  Google Scholar 

  13. Y. Hu, P.C. Loizou, Evaluation of objective quality measures for speech enhancement. IEEE Trans. Audio Speech Lang. Process. 16(1), 229–238 (2008)

    Article  Google Scholar 

  14. S. Kamath, P. Loizou, A multi-band spectral subtraction method for enhancing speech corrupted by colored noise, in IEEE International Conference on Acoustics Speech and Signal Processing, vol. 4 (Citeseer, 2002), pp. 4164–4167

  15. M.F. Kasim, T. Adiono, M. Fahreza, M.F. Zakiy, Real-time architecture and FPGA implementation of adaptive general spectral substraction method. Proced. Technol. 11, 191–198 (2013)

    Article  Google Scholar 

  16. M. Krawczyk, T. Gerkmann, STFT phase reconstruction in voiced speech for an improved single-channel speech enhancement. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 22(12), 1931–1940 (2014)

    Article  Google Scholar 

  17. P. Krishnamoorthy, S.M. Prasanna, Enhancement of noisy speech by temporal and spectral processing. Speech Commun. 53(2), 154–174 (2011)

    Article  Google Scholar 

  18. J. Kulmer, P. Mowlaee, Phase estimation in single channel speech enhancement using phase decomposition. IEEE Signal Process. Lett. 22(5), 598–602 (2015)

    Article  Google Scholar 

  19. J. Le Roux, E. Vincent, Consistent wiener filtering for audio source separation. IEEE Signal Process. Lett. 20(3), 217–220 (2013)

    Article  Google Scholar 

  20. J. Lim, A. Oppenheim, Enhancement and bandwidth compression of noisy speech. Proc. IEEE 67(12), 1586–1604 (1979). doi:10.1109/PROC.1979.11540

    Article  Google Scholar 

  21. P. Lockwood, J. Boudy, Experiments with a nonlinear spectral subtractor (NSS), hidden markov models and the projection, for robust speech recognition in cars. Speech Commun. 11(2–3), 215–228 (1992)

    Article  Google Scholar 

  22. P. Loizou, G. Kim, Reasons why current speech-enhancement algorithms do not improve speech intelligibility and suggested solutions. IEEE Trans. Audio Speech Lang. Process. 19(1), 47–56 (2011). doi:10.1109/TASL.2010.2045180

    Article  Google Scholar 

  23. P.C. Loizou, Speech enhancement: theory and practice (CRC Press, Boca Raton, 2013)

    Google Scholar 

  24. U. Mahbub, T. Rahman, A. Rashid, FPGA implementation of real time acoustic noise suppression by spectral subtraction using dynamic moving average method, in IEEE Symposium on Industrial Electronics and Applications, 2009. ISIEA 2009, vol. 1. IEEE (2009), pp. 365–370

  25. H. Momeni, H. Abutalebi, Generalization of maximum a posteriori amplitude estimator under speech presence uncertainty for speech enhancement. Circuits Syst. Signal Process. 33(8), 2565–2582 (2014). doi:10.1007/s00034-014-9762-0

    Article  MathSciNet  Google Scholar 

  26. P. Mowlaee, R. Martin, On phase importance in parameter estimation for single-channel source separation, in International Workshop on Acoustic Signal Enhancement; Proceedings of IWAENC 2012 VDE (2012), pp. 1–4

  27. R. Naik, A. Stojcevski, V. Vibhute, J. Singh, Implementation of magnitude estimation algorithm for hearing aid, in Proceedings of the 2004 IEEE International Workshop on Biomedical Circuits and Systems. IEEE (2004), pp. S1–3

  28. K. Paliwal, K. Wójcicki, B. Shannon, The importance of phase in speech enhancement. Speech Commun. 53(4), 465–494 (2011)

    Article  Google Scholar 

  29. S. Rangachari, P.C. Loizou, A noise-estimation algorithm for highly non-stationary environments. Speech Commun. 48(2), 220–231 (2006)

    Article  Google Scholar 

  30. S. Samui, I. Chakrabarti, S.K. Ghosh, Global soft decision based speech enhancement using voiced-unvoiced uncertainty and harmonic phase decomposition technique, in Proceedings of the 2016 International Conference on Signal Processing and Communications (SPCOM). IEEE (2016)

  31. S. Samui, I. Chakrabarti, S.K. Ghosh, Improved single channel phase-aware speech enhancement technique for low signal-to-noise ratio signal. IET Signal Process. 10(6), 641–650 (2016). doi:10.1049/iet-spr.2015.0182

    Article  Google Scholar 

  32. S. Samui, I. Chakrabarti, S.K. Ghosh, Two-stage temporal processing for single-channel speech enhancement. Interspeech 2016, 3723–3727 (2016). doi:10.21437/Interspeech.2016-307

    Article  Google Scholar 

  33. J.W. Seok, K.S. Bae, Reduction of musical noise in spectral subtraction method using subframe phase randomisation. Electron. Lett. 35(2), 123–125 (1999)

    Article  Google Scholar 

  34. J. Sohn, N.S. Kim, W. Sung, A statistical model-based voice activity detection. IEEE Signal Process. Lett. 6(1), 1–3 (1999)

    Article  Google Scholar 

  35. A. Sugiyama, R. Miyahara, Phase randomization-a new paradigm for single-channel signal enhancement, in Proceedings of the 2013 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE (2013), pp. 7487–7491

  36. C.H. Taal, R.C. Hendriks, R. Heusdens, J. Jensen, An algorithm for intelligibility prediction of time-frequency weighted noisy speech. IEEE Trans. Audio Speech Lang. Process. 19(7), 2125–2136 (2011)

    Article  Google Scholar 

  37. A. Varga, H.J. Steeneken, Assessment for automatic speech recognition: Ii. NOISEX-92: a database and an experiment to study the effect of additive noise on speech recognition systems. Speech Commun. 12(3), 247–251 (1993)

    Article  Google Scholar 

  38. P. Vary, Noise suppression by spectral magnitude estimation-mechanism and theoretical limits. Signal Process. 8(4), 387–400 (1985)

    Article  Google Scholar 

  39. N. Virag, Single channel speech enhancement based on masking properties of the human auditory system. IEEE Trans. Speech Audio Process. 7(2), 126–137 (1999)

    Article  Google Scholar 

  40. D. Wang, J.S. Lim, The unimportance of phase in speech enhancement. IEEE Trans. Acoust. Speech Signal Process. 30(4), 679–681 (1982)

    Article  Google Scholar 

  41. M.C. Wen, S.J. Wang, Y.N. Lin, Low power parallel multiplier with column bypassing, in Proceedings of the IEEE International Symposium on Circuits and Systems, 2005. ISCAS 2005. IEEE (2005), pp. 1638–1641

  42. J. Whittington, K. Deo, T. Kleinschmidt, M. Mason, FPGA implementation of spectral subtraction for in-car speech enhancement and recognition, in Proceedings of the 2nd International Conference on Signal Processing and Communication Systems, 2008. ICSPCS 2008. IEEE (2008), pp. 1–8

  43. K.K. Wójcicki, P.C. Loizou, Channel selection in the modulation domain for improved speech intelligibility in noise. J. Acoust. Soc. Am. 131(4), 2904–2913 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the editor and the anonymous reviewers for their helpful suggestions and valuable comments throughout the review process, which have considerably helped to improve the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Samui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samui, S., Sahu, P., Chakrabarti, I. et al. FPGA Implementation of a Phase-Aware Single-Channel Speech Enhancement System. Circuits Syst Signal Process 36, 4688–4715 (2017). https://doi.org/10.1007/s00034-017-0541-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0541-6

Keywords

Navigation