Skip to main content

A Fast Signal Denoising Algorithm Based on the LPA-ICI Method for Real-Time Applications

Abstract

We propose a new algorithm for denoising of additive white Gaussian noise-corrupted signals, based on the intersection of confidence intervals (ICI) algorithm, called the fast intersection of confidence intervals (FICI) algorithm. The proposed approach combines the FICI algorithm, used for the adaptive filter support size selection, with the local polynomial approximation (LPA) method, used as a filter design tool. The LPA-FICI method, when compared to the existing ICI-based denoising method, reduces the computational complexity by up to N times, where N is the number of signal samples, resulting in significantly faster algorithm execution time, while maintaining the estimation accuracy close to the one achieved using the original ICI-based method. Furthermore, the proposed modifications allow the use of the LPA-FICI method in real-time signal processing. In conducted simulations, we have confirmed advantages of the proposed method on two commonly used benchmark signals corrupted with various noise strengths.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    C. Alippi, G. Boracchi, M. Roveri, A just-in-time adaptive classification system based on the intersection of confidence intervals rule. Neural Netw. 24(8), 791–800 (2011). doi:10.1016/j.neunet.2011.05.012. (Artificial Neural Networks: Selected Papers from ICANN 2010)

  2. 2.

    A.O. Boudraa, J.C. Cexus, EMD-based signal filtering. IEEE Trans. Instrum. Meas. 56(6), 2196–2202 (2007). doi:10.1109/TIM.2007.907967

    Article  Google Scholar 

  3. 3.

    A. Buades, B. Coll, J.M. Morel, Image denoising methods. A new nonlocal principle. SIAM Rev. 52(1), 113–147 (2010). doi:10.1137/090773908

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    P. Campisi, K. Egiazarian, (eds.): Blind Image Deconvolution Theory and Applications (CRC Press, Boca Raton, 2007). doi:10.1201/9781420007299

  5. 5.

    I. Djurovic, L. Stankovic, Modification of the ICI rule-based IF estimator for high noise environments. IEEE Trans. Signal Process. 52(9), 2655–2661 (2004). doi:10.1109/TSP.2004.832030

    Article  Google Scholar 

  6. 6.

    D.L. Donoho, I.M. Johnstone, Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  7. 7.

    J. Fan, I. Gijbels, Local Polynomial Modelling and its Applications: Monographs on Statistics and Applied Probability, vol. 66 (CRC Press, Boca Raton, 1996)

    MATH  Google Scholar 

  8. 8.

    A. Foi, V. Katkovnik, K. Egiazarian, Pointwise shape-adaptive dct for high-quality denoising and deblocking of grayscale and color images. IEEE Trans. Image Process. 16(5), 1395–1411 (2007). doi:10.1109/TIP.2007.891788

    MathSciNet  Article  Google Scholar 

  9. 9.

    A. Goldenshluger, A. Nemirovski, On spatially adaptive estimation of nonparametric regression. Math. Methods Stat. 6(2), 135–170 (1997)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    P. Jain, V. Tyagi, A survey of edge-preserving image denoising methods. Inf. Syst. Front. 18(1), 159–170 (2016). doi:10.1007/s10796-014-9527-0

    Article  Google Scholar 

  11. 11.

    V. Katkovnik, A new method for varying adaptive bandwidth selection. IEEE Trans. Signal Process. 47(9), 2567–2571 (1999). doi:10.1109/78.782208

    Article  Google Scholar 

  12. 12.

    V. Katkovnik, K. Egiazarian, J. Astola, Adaptive window size image de-noising based on intersection of confidence intervals (ICI) rule. J. Math. Imaging Vis. 16(3), 223–235 (2002). doi:10.1023/A:1020329726980

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    V. Katkovnik, K. Egiazarian, J. Astola, Adaptive Varying Scale Methods in Image Processing (Tampere International Center for Signal Processing, Tampere, 2003)

    MATH  Google Scholar 

  14. 14.

    V. Katkovnik, K. Egiazarian, J. Astola, Local approximation techniques in signal and image processing. SPIE (2006). doi:10.1117/3.660178

    MATH  Google Scholar 

  15. 15.

    V. Katkovnik, L. Stankovic, Instantaneous frequency estimation using the Wigner distribution with varying and data-driven window length. IEEE Trans. Signal Process. 46(9), 2315–2325 (1998). doi:10.1109/78.709514

    Article  Google Scholar 

  16. 16.

    A. Komaty, A.O. Boudraa, B. Augier, D. Dar-Emzivat, EMD-based filtering using similarity measure between probability density functions of IMFs. IEEE Trans. Instrum. Meas. 63(1), 27–34 (2014). doi:10.1109/TIM.2013.2275243

    Article  Google Scholar 

  17. 17.

    Y. Kopsinis, S. McLaughlin, Development of EMD-based denoising methods inspired by wavelet thresholding. IEEE Trans. Signal Process. 57(4), 1351–1362 (2009). doi:10.1109/TSP.2009.2013885

    MathSciNet  Article  Google Scholar 

  18. 18.

    J. Lerga, E. Grbac, V. Sucic, An ICI based algorithm for fast denoising of video signals. Automatika 55(4), 351–358 (2014). doi:10.7305/automatika.2014.12.525

    Google Scholar 

  19. 19.

    J. Lerga, V. Sucic, Nonlinear IF estimation based on the pseudo WVD adapted using the improved sliding pairwise ICI rule. IEEE Signal Process. Lett. 16(11), 953–956 (2009). doi:10.1109/LSP.2009.2027651

    Article  Google Scholar 

  20. 20.

    J. Lerga, V. Sucic, M. Vrankić, Separable image denoising based on the relative intersection of confidence intervals rule. Informatica 22(3), 383–394 (2011)

    MathSciNet  MATH  Google Scholar 

  21. 21.

    J. Lerga, M. Vrankic, V. Sucic, A signal denoising method based on the improved ICI rule. IEEE Signal Process. Lett. 15, 601–604 (2008). doi:10.1109/LSP.2008.2001817

    Article  MATH  Google Scholar 

  22. 22.

    G. Segon, J. Lerga, V. Sucic, Improved LPA-ICI-based estimators embedded in a signal denoising virtual instrument. Signal Image Video Process. 1–8 (2016). doi:10.1007/s11760-016-0921-6

  23. 23.

    V. Sucic, J. Lerga, M. Vrankic, Adaptive filter support selection for signal denoising based on the improved ICI rule. Dig. Signal Process. 23(1), 65–74 (2013). doi:10.1016/j.dsp.2012.06.014

    MathSciNet  Article  Google Scholar 

  24. 24.

    M. Tomic, S. Loncaric, D. Sersic, Adaptive spatio-temporal denoising of fluoroscopic x-ray sequences. Biomed. Signal Process. Control 7(2), 173–179 (2012). doi:10.1016/j.bspc.2011.02.003

    Article  Google Scholar 

  25. 25.

    M. Tomic, D. Sersic, Adaptive edge-preserving denoising by point-wise wavelet basis selection. IET Signal Process. 6(1), 1–7 (2012). doi:10.1049/iet-spr.2010.0240

    MathSciNet  Article  Google Scholar 

  26. 26.

    A.B. Tsybakov, Introduction to Nonparametric Estimation (Springer, New York, 2009). doi:10.1007/b13794

    Book  MATH  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Victor Sucic.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Volaric, I., Lerga, J. & Sucic, V. A Fast Signal Denoising Algorithm Based on the LPA-ICI Method for Real-Time Applications. Circuits Syst Signal Process 36, 4653–4669 (2017). https://doi.org/10.1007/s00034-017-0538-1

Download citation

Keywords

  • Signal denoising
  • Fast intersection of confidence intervals (FICI) algorithm
  • Adaptive filtering
  • Edge preserving