Skip to main content
Log in

Current-Mode Precision Full-Wave Rectifier Circuits

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a new current-mode precision full-wave rectifier is presented. The proposed circuit employs a single active element namely extra-X current conveyor and two NMOS transistors without using any passive element which is suitable for IC implementation. The circuit exhibits low input impedance and high output impedance, so it is easily cascadable. The non-idealities and the parasitics effects on the circuit are also discussed. The detailed Monte Carlo analysis and distortion study is also carried out along with supporting results. The functionality of the proposed current-mode precision full-wave rectifier is verified through PSPICE simulation using 0.25 \(\upmu \hbox {m}\) TSMC CMOS technology parameters. The proposal is also supported by experimental result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. P. Beg, I.A. Khan, S. Maheshwari, Biphase amplifier based precision rectifiers using current conveyors. Int. J. Comput. Appl. 42(3), 14–18 (2012)

    Google Scholar 

  2. D. Biolek, E. Hancioglu, A.Ü. Keskin, High-performance current differencing transconductance amplifier and its application in precision current-mode rectification. Int. J. Electron. Commun. 62(2), 92–96 (2008)

    Article  Google Scholar 

  3. S.J.G. Gift, B. Maundy, Versatile precision full-wave rectifiers for instrumentation and measurements. IEEE Trans. Instrum. Meas. 56(5), 1703–1710 (2007)

    Article  Google Scholar 

  4. S.J.G. Gift, A high-performance full-wave rectifier circuit. Int. J. Electron. 87(8), 925–930 (2000)

    Article  Google Scholar 

  5. M.A. Ibrahim, E. Yuce, S. Minaei, A new DVCC-based fully cascadable voltage-mode full-wave rectifier. J. Comput. Electron. 15(4), 1440–1449 (2016)

    Article  Google Scholar 

  6. A.A. Khan, M. Abouel-ela, M.A. Al-Turraigi, Current-mode precision rectification. Int. J. Electron. Commun. 79(6), 853–859 (1995)

    Article  Google Scholar 

  7. F. Khateb, J. Vavra, D. Biolek, A novel current-mode full-wave rectifier based on one CDTA and two diodes. Radioengineering 19(3), 437–445 (2010)

    Google Scholar 

  8. J. Koton, A. Lahiri, N. Herencsar, K. Vrba, Current-mode dual-phase precision full-wave rectifier using current-mode two-cell winner-takes-all (WTA) circuit. Radioengineering 20(2), 428–432 (2011)

    Google Scholar 

  9. J. Koton, N. Herenscar, K. Vrba, Current and voltage conveyors in current and voltage-mode precision full-wave rectifiers. Radioengineering 20(1), 19–24 (2011)

    Google Scholar 

  10. M. Kumngern, K. Dejhan, High frequency and high precision CMOS full-wave rectifier. Int. J. Electron. 93(3), 185–199 (2006)

    Article  MATH  Google Scholar 

  11. M. Kumngern, New versatile precision rectifier. IET Circuits Device Syst. 8(2), 141–151 (2014)

    Article  Google Scholar 

  12. S. Maheshwari, D. Agrawal, High performance voltage-mode tunable all-pass section. J. Circuits Syst. Comput. 24(6), 1–12 (2015)

    Article  Google Scholar 

  13. S. Maheshwari, M.S. Ansari, P. Beg, High performance precision rectifier for analog signal processing. Int. J. Comput. Appl. 47(14), 26–29 (2012)

    Google Scholar 

  14. S. Maheshwari, Current controlled precision rectifier circuits. J. Circuits Syst. Comput. 16(1), 129–138 (2007)

    Article  Google Scholar 

  15. S. Maheshwari, Current conveyor all-pass section: brief review and novel solution. Sci. World J. article ID 429391, 1–6 (2013)

  16. S. Minaei, E. Yuce, A new full-wave rectifier circuit employing single dual-X current conveyor. Int. J. Electron. 95(8), 777–784 (2008)

    Article  Google Scholar 

  17. M. Sagbas, S. Minaei, U.E. Ayten, Component reduced current-mode full-wave rectifier circuits using single active component. IET Circuits Device Syst. 10(1), 1–11 (2016)

    Article  Google Scholar 

  18. M. Shaterian, C.M. Twigg, J. Azhari, An MTL-based configurable block for current-mode nonlinear analog computation. IEEE Trans. Circuits Syst. II Expr. Briefs 60(9), 587–591 (2013)

    Article  Google Scholar 

  19. C. Toumazou, F.J. Lidgey, Wide-band precision rectification. IEE Proc. G Circuits Devices Syst. 134(1), 7–15 (1987)

    Article  Google Scholar 

  20. C. Toumazou, F.J. Lidgey, S. Chattong, High frequency current conveyor precision full-wave rectifier. Electron. Lett. 30(10), 745–746 (1994)

    Article  Google Scholar 

  21. Z. Wang, Full-wave precision rectification that is performed in current domain and very suitable for CMOS implementation. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 39(6), 456–462 (1992)

    Article  Google Scholar 

  22. E. Yuce, S. Minaei, O. Cicekoglu, Full wave rectifier realization using only two CCII+s and NMOS transistors. Int. J. Electron. 93(8), 533–541 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the anonymous reviewers for useful suggestions for enriching this paper. The authors are thankful to the Editor and Associate Editor for recommending this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudhanshu Maheshwari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agrawal, D., Maheshwari, S. Current-Mode Precision Full-Wave Rectifier Circuits. Circuits Syst Signal Process 36, 4293–4308 (2017). https://doi.org/10.1007/s00034-017-0531-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-017-0531-8

Keywords

Navigation