Circuits, Systems, and Signal Processing

, Volume 36, Issue 9, pp 3585–3597 | Cite as

Memristor-Based Low-Power High-Speed Nonvolatile Hybrid Memory Array Design

  • Khandoker Asif Faruque
  • Baishakhi Rani Biswas
  • A. B. M. Harun-ur Rashid
Article

Abstract

In this paper, a memristor–transistor hybrid architecture-based nonvolatile memory array design approach has been proposed. Here, a single memory cell consists of a memristor and one transmission gate, whereas a conventional SRAM cell consists of six transistors. This proposed design has the advantage of being nonvolatile, having high switching speed and low power requirement. The proposed cell shows better performance in comparison with other published memristor–transistor hybrid memory cell.

Keywords

Memristor Transmission gate Nonvolatile High speed Low power 

References

  1. 1.
    S. Chakraborty et al., Built-in selectors self-assembled into memristors. in 2016 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, 2016)Google Scholar
  2. 2.
    B.J. Choi, D.S. Jeong, S.K. Kim, C. Rohde, S. Choi, J.H. Oh, H.J. Kim, C.S. Hwang, K. Szot, R. Waser, B. Reichenberg, S. Tiedke, Resistive switching mechanism of TiO\(_2\) thin films grown by atomic-layer deposition. J. Appl. Phys. 98(3), 033715 (2005)CrossRefGoogle Scholar
  3. 3.
    L.O. Chua, Memristor: the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507519 (1971)Google Scholar
  4. 4.
    P.W.C. Ho, H.A.F. Almurib, T.N. Kumar, One-bit non-volatile memory cell using memristor and transmission gates, in IEEE, 2nd International Conference on Eletronic Design (2014), pp. 244–248. doi:10.1109/CED.2014.7015807
  5. 5.
    S. Jo, T. Chang, I. Ebong, B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10(4), 12971301 (2010)CrossRefGoogle Scholar
  6. 6.
    P. Junsangsri, F. Lombardi, Design of a hybrid memory cell using memristance and ambipolarity. IEEE Trans. Nanotechnol. 12(1), 71–80 (2013)CrossRefGoogle Scholar
  7. 7.
    D.H. Kwon, K.M. Kim, J.H. Jang, J.M. Jeon, M.H. Lee, G.H. Kim, X.S. Li, G.S. Park, B. Lee, S. Han, M. Kim, C.S. Hwang, Atomic structure of conducting nanofilaments in TiO\(_2\) resistive switching memory. Nat. Nanotechnol. 5, 148 (2010)CrossRefGoogle Scholar
  8. 8.
    M.J. Lee, C.B. Lee, D. Lee, S.R. Lee, M. Chang, J.H. Hur, Y.-B. Kim, C.-J. Kim, D.H. Seo, S. Seo, U.I. Chung, I.-K. Yoo, K. Kim, A fast, high-endurance and scalable non-volatile memory device made from asymmetric Ta\(_2\)O\(_5\)/TaO\(_2\) bilayer structures. Nat. Mater. 10, 625 (2011)CrossRefGoogle Scholar
  9. 9.
    W. Lu, K.-H. Kim, T. Chang, S. Gaba, Two-terminal resistive switches (memristors) for memory and logic applications, in Proc. 16th Asia and South Pacific Design Automation Conference, 2011, pp. 217–223Google Scholar
  10. 10.
    F. Merrikh-Bayat, S. Shouraki, Memristor-based circuits for performing basic arithmetic operations. Proced. Comput. Sci. 3, 128–132 (2011)CrossRefGoogle Scholar
  11. 11.
    F. Miao, J.P. Strachan, J.J. Yang, M.-X. Zhang, I. Goldfarb, A.C. Torrezan, P. Eschbach, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, Anatomy of a nanoscale conduction channel reveals the mechanism of a high performance memristor. Adv. Mater. 47(23), 5633–5640 (2011)CrossRefGoogle Scholar
  12. 12.
    Y.V. Pershin, S. La Fontaine, M. Di Ventra, Memristive model of amoeba learning. Phys. Rev. E 80(2), 021926 (2009)CrossRefGoogle Scholar
  13. 13.
    Y. Pershin, M. Di Ventra, Practical approach to programmable analog circuits with memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 57(8), 18571864 (2010)MathSciNetCrossRefGoogle Scholar
  14. 14.
    W. Robinett, M. Pickett, J. Borghetti, Q. Xia, G. Snider, G. Medeiros- Ribeiro, R. Williams, A memristor-based nonvolatile latch circuit. Nanotechnology 21, 235203 (2010)CrossRefGoogle Scholar
  15. 15.
    V. Sakode, F. Lombardi, J. Han, Cell design and comparative evaluation of a novel 1T memristor-based memory, in IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH), pp. 152–159. doi:10.1145/2765491.2765519 (2012)
  16. 16.
    S.S. Sarwar, S.A.N. Saqueb, F. Quaiyum, Memristor-based nonvolatile random access memory: hybrid architecture for low power compact memory design. IEEE Access 1, 29–34 (2013). doi:10.1109/ACCESS:2013.2259891 CrossRefGoogle Scholar
  17. 17.
    A. Sawa, Resistive switching in transition metal oxides. Mater. Today 11, 28 (2008)CrossRefGoogle Scholar
  18. 18.
    S. Shin, K. Kim, S.-M. Kang, Memristor applications for programmable analog ics. IEEE Trans. Nanotechnol. 10(2), 266274 (2011)Google Scholar
  19. 19.
    G.M. Sreerama Reddy, P. Chandrasekhara Reddy, Design and implementation of 8K-bits low power SRAM in 180 nm technology, in Proceedings of the International Multi Conference of Engineers and Computer Scientists 2009, vol 2 (IMECS, Hong Kong, 2009). 18–20 Mar 2009Google Scholar
  20. 20.
    D.B. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453, 8083 (2008)CrossRefGoogle Scholar
  21. 21.
    R. Waser, R. Dittmann, G. Staikov, K. Szot, Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges. Adv. Mater. 21, 2632 (2009)CrossRefGoogle Scholar
  22. 22.
    C. Yakopcic, T.M. Taha, G. Subramanyam, R.E. Pino, Memristor SPICE model and crossbar simulation based on devices with nanosecond switching time, in Conference: Neural Networks (IJCNN), The 2013 International Joint Conference. doi:10.1109/IJCNN.2013.6706773
  23. 23.
    J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, D.R. Stewart, R.S. Williams, Memristive switching mechanism for metal/oxide/metal nanodevices. Nat. Nanotechnol. 3, 429 (2008)CrossRefGoogle Scholar
  24. 24.
    J.J. Yang, M.X. Zhang, J.P. Strachan, F. Miao, M.D. Pickett, R.D. Kelley, G. Medeiros-Ribeiro, R.S. Williams, High switching endurance in TaOx memristive devices. Appl. Phys. Lett. 97, 232102 (2010)CrossRefGoogle Scholar
  25. 25.
    J.J. Yang, N.P. Kobayashi, J.P. Strachan, M.X. Zhang, D.A.A. Ohlberg, M.D. Pickett, Z. Li, G. Medeiros-Ribeiro, R.S. Williams, Dopant control by atomic layer deposition in oxide films for memristive switches. Chem. Mater. 23, 123 (2011)CrossRefGoogle Scholar
  26. 26.
    J.J. Yang, J. Strachan, F. Miao, M.-X. Zhang, M. Pickett, W. Yi, D. Ohlberg, G. Medeiros-Ribeiro, R. Williams, Metal/TiO\(_2\) interfaces for memristive switches. Appl. Phys. A 102, 785 (2011)CrossRefGoogle Scholar
  27. 27.
    W. Yi, F. Perner, M. Qureshi, H. Abdalla, M. Pickett, J. Yang, M.-X. Zhang, G. Medeiros-Ribeiro, R. Williams, Feedback write scheme for memristive switching devices. Appl. Phys. A 102, 973 (2011)CrossRefGoogle Scholar
  28. 28.
    M.A. Zidan et al., Single-readout high-density memristor crossbar. Sci. Rep. 6, 4–6 (2016)Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Khandoker Asif Faruque
    • 1
  • Baishakhi Rani Biswas
    • 1
  • A. B. M. Harun-ur Rashid
    • 1
  1. 1.Bangladesh University of Engineering and TechnologyDhakaBangladesh

Personalised recommendations