M.S. Ahmad, O. Kukrer, A. Hocanin, Robust recursive inverse adaptive algorithm in impulsive noise. Circuits Syst. Signal Process. 31(2), 703–710 (2012)
MathSciNet
Article
MATH
Google Scholar
R.G. Baraniuk. Compressive sensing. IEEE Signal Process. Mag. 24(4), 118–124 (2007)
T. Blumensath, Sampling and reconstructing signals from a union of linear subspaces. IEEE Trans. Inf. Theory 57(7), 4660–4671 (2011)
MathSciNet
Article
Google Scholar
E.J. Candès, J. Romberg, T. Tao, Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)
MathSciNet
Article
MATH
Google Scholar
E.J. Candès, T. Tao, Decoding by linear programming. IEEE Trans. Inf. Theory 51(12), 4203–4215 (2005)
MathSciNet
Article
MATH
Google Scholar
E.J. Candès, T. Tao, Near-optimal signal recovery from random projections: universal encoding strategies? IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)
MathSciNet
Article
MATH
Google Scholar
R.E. Carrillo, K.E. Barner, T.C. Aysal, Robust sampling and reconstruction methods for sparse signals in the presence of impulsive noise. IEEE J. Sel. Top. Signal Process. 4(2), 392–408 (2010)
Article
Google Scholar
F. Dadouchi, C. Gervaise, C. Ioana, J. Huillery, J.I. Mars, Automated segmentation of linear time-frequency representations of marine-mammal sounds. J. Acoust. Soc. Am. 134(3), 2546–2555 (2013)
Article
Google Scholar
I. Daubechies, M. Defrise, C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)
MathSciNet
Article
MATH
Google Scholar
G. Davis, S. Mallat, M. Avellaneda, Adaptive greedy approximations. Constr. Approx. 13(1), 57–98 (1997)
MathSciNet
Article
MATH
Google Scholar
I. Djurović, V.V. Lukin, M. Simeunović, B. Barkat, Quasi maximum likelihood estimator of polynomial phase signals for compressed sensed data. AEU Int. J. Electron. Commun. 68(7), 631–636 (2014)
Article
Google Scholar
D.L. Donoho, Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
MathSciNet
Article
MATH
Google Scholar
D.L. Donoho, M. Elad, V.N. Temlyakov, Stable recovery of sparse overcomplete representations in the presence of noise. IEEE Trans. Inf. Theory 52(1), 6–18 (2006)
MathSciNet
Article
MATH
Google Scholar
M.J. Fadili, J.L. Starck, F. Murtagh, Inpainting and zooming using sparse representations. Comput. J. 52(1), 64–79 (2009)
Article
Google Scholar
M.A. Figueiredo, R.D. Nowak, S.J. Wright, Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process. 1(4), 586–597 (2007)
Article
Google Scholar
P. Flandrin, P. Borgnat, Time-frequency energy distributions meet compressed sensing. IEEE Trans. Signal Process. 58(6), 2974–2982 (2010)
MathSciNet
Article
Google Scholar
S.G. Mallat, Z. Zhang, Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)
Article
MATH
Google Scholar
J.J. Moré, G. Toraldo, On the solution of large quadratic programming problems with bound constraints. SIAM J. Optim. 1(1), 93–113 (1991)
MathSciNet
Article
MATH
Google Scholar
D. Needell, J.A. Tropp, CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmonic Anal. 26(3), 301–321 (2009)
MathSciNet
Article
MATH
Google Scholar
Z.M. Ramadan, Efficient restoration method for images corrupted with impulse noise. Circuits Syst. Signal Process. 31(4), 1397–1406 (2012)
MathSciNet
Article
Google Scholar
A.A. Roenko, V.V. Lukin, I. Djurović, Two approaches to adaptation of sample myriad to characteristics of S\(\alpha \)S distribution data. Signal Process. 90(7), 2113–2123 (2010)
Article
MATH
Google Scholar
E. Sejdić, A. Cam, L. Chaparro, C. Steele, T. Chau, Compressive sampling of swallowing accelerometry signals using time-frequency dictionaries based on modulated discrete prolate spheroidal sequences. EURASIP J. Adv. Signal Process. 101, 1–14 (2012)
Google Scholar
T. Serafini, G. Zanghirati, L. Zanni, Gradient projection methods for quadratic programs and applications in training support vector machines. Optim. Methods Softw. 20(2–3), 353–378 (2005)
MathSciNet
Article
MATH
Google Scholar
I. Stanković. Recovery of images with missing pixels using a gradient compressive sensing algorithm. arXiv preprint arXiv:1407.3695 (2014)
L. Stanković, A measure of some time–frequency distributions concentration. Signal Process. 81(3), 621–631 (2001)
Article
MATH
Google Scholar
L. Stanković, M. Daković, On the reconstruction of randomly sampled sparse signals using an adaptive gradient algorithm. arxiv:1412.0624
L. Stanković, M. Daković. On the uniqueness of the sparse signals reconstruction based on the missing samples variation analysis. Math. Probl. Eng. Article ID 629759 (2015). doi:10.1155/2015/629759
L. Stanković, M. Daković, S. Vujović, Adaptive variable step algorithm for missing samples recovery in sparse signals. IET Signal Process. 8(3), 246–256 (2014)
Article
Google Scholar
L. Stanković, Digital Signal Processing with Selected Topics (CreateSpace Independent Publishing Platform, An Amazon.com Company, North Charleston, 2015)
L. Stanković, I. Orović, S. Stanković, M.G. Amin, Compressive sensing based separation of nonstationary and stationary signals overlapping in time–frequency. IEEE Trans. Signal Process. 61(18), 4562–4572 (2013). doi:10.1109/TSP.2013.2271752
MathSciNet
Article
Google Scholar
L. Stanković, S. Stanković, M.G. Amin, Missing samples analysis in signals for applications to L-estimation and compressive sensing. Signal Process. 94, 401–408 (2014)
Article
Google Scholar
L. Stanković, S. Stanković, I. Orović, M.G. Amin, Robust time-frequency analysis based on the L-estimation and compressive sensing. IEEE Signal Process. Lett. 20(5), 499–502 (2013)
Article
Google Scholar
C. Studer, P. Kuppinger, G. Pope, H. Bolcskei, Recovery of sparsely corrupted signals. IEEE Trans. Inf. Theory 58(5), 3115–3130 (2012)
MathSciNet
Article
Google Scholar
B.A. Turlach, On algorithms for solving least squares problems under an L1 penalty or an L1 constraint. in 2004 Proceedings of the American Statistical Association, Statistical Computing Section [CD-ROM], pp. 2572–2577 (2005)
S.V. Vaseghi, Advanced Digital Signal Processing and Noise Reduction (Wiley, Hoboken, 2008)
Book
Google Scholar
S.J. Wright, Implementing proximal point methods for linear programming. J. Optim. Theory Appl. 65(3), 531–554 (1990)
MathSciNet
Article
MATH
Google Scholar
G. You, T. Qiu, A. Song, Novel direction findings for cyclostationary signals in impulsive noise environments. Circuits Syst. Signal Process. 32(6), 2939–2956 (2013)
MathSciNet
Article
Google Scholar