Skip to main content
Log in

Stability and Robustness of Singular Systems of Fractional Nabla Difference Equations

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

In this article, we study the stability and robustness of a class of singular linear systems of fractional nabla difference equations whose coefficients are constant matrices. Firstly, by assuming that the singular fractional system has a unique solution for given initial conditions, we study the asymptotic stability of the equilibria of the homogeneous system. We also prove conditions on the input vector under which the solution of the non-homogeneous system converges. Next, since it is known that existence and uniqueness of solutions depend on the invariants of the pencil of the system, by taking into consideration the fact that small perturbations can change the invariants, we perturb the singular fractional system and obtain bounds on the perturbation effect of the invariants of the pencil. In addition, by using this result, we study the robustness of solutions of the system. Finally, we give numerical examples based on a real singular fractional nabla dynamical system to illustrate our theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.A. Anastassiou, Right nabla discrete fractional calculus. Int. J. Differ. Equ. 6(2), 91–104 (2011)

    MathSciNet  Google Scholar 

  2. G.A. Anastassiou, Nabla discrete fractional calculus and nabla inequalities. Math. Comput. Model. 51(5), 562–571 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. F.M. Atici, P.W. Eloe, Linear systems of fractional nabla difference equations. Rocky Mt. J. Math. 41(2), 353–370 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. F.M. Atici, P.W. Eloe, Modeling with fractional difference equations. J. Math. Anal. Appl. 369(1), 1–9 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. D. Baleanu, K. Diethelm, E. Scalas, Fractional Calculus: Models and Numerical Methods (World Scientific, Singapore, 2012)

    Book  MATH  Google Scholar 

  6. S.L. Campbell, Singular Systems of Differential Equations, vol. 2 (Pitman, San Francisco, 1982)

    MATH  Google Scholar 

  7. J. Cermak, T. Kisela, L. Nechvatal, Stability regions for linear fractional differential systems and their discretizations. Appl. Math. Comput. 219(12), 7012–7022 (2013)

    MathSciNet  MATH  Google Scholar 

  8. J. Cermak, I. Gyori, L. Nechvatal, On explicit stability conditions for a linear fractional difference system. Fract. Calc. Appl. Anal. 18(3), 651–672 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  9. Y.Q. Chen, H.-S. Ahn, I. Podlubny, Robust stability check of fractional order linear time invariant systems with interval uncertainties. Signal Process. 86(10), 2611–2618 (2006)

    Article  MATH  Google Scholar 

  10. L. Dai, Singular control systems, in Lecture Notes in Control and information Sciences, eds. by M.Thoma, A.Wyner (1988)

  11. I.K. Dassios, Optimal solutions for non-consistent singular linear systems of fractional nabla difference equations. Circ. Syst. Signal Process. 34(6), 1769–1797 (2015)

  12. I.K. Dassios, D.I. Baleanu, Duality of singular linear systems of fractional nabla difference equations. Appl. Math. Model. 15, 22 (2014)

    Google Scholar 

  13. I.K. Dassios, D. Baleanu, On a singular system of fractional nabla difference equations with boundary conditions. Bound. Value Probl. 2013, 148 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. I. Dassios, D. Baleanu, G. Kalogeropoulos, On non-homogeneous singular systems of fractional nabla difference equations. Appl. Math. Comput. 227, 112–131 (2014)

    MathSciNet  Google Scholar 

  15. I. Dassios, Geometric relation between two different types of initial conditions of singular systems of fractional nabla difference equations. Math. Methods Appl. Sci. (2015). doi:10.1002/mma.3771

  16. W. Deng, C. Li, J. Lü, Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48(4), 409–416 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Dzielinski, W. Malesza, Point to point control of fractional differential linear control systems. Adv. Differ. Equ. 2011(13), 17 (2011)

    MathSciNet  MATH  Google Scholar 

  18. A. Dzielinski, G. Sarwas, D. Sierociuk, Comparison and validation of integer and fractional order ultracapacitor models. Adv. Differ. Equ. 2011(11), 15 (2011)

    MathSciNet  MATH  Google Scholar 

  19. A. Dzielinski, D. Sierociuk, Fractional Order Model of Beam Heating Process and Its Experimental Verification. New Trends in Nanotechnology and Fractional Calculus Applications (Springer, New York, 2010)

    MATH  Google Scholar 

  20. A. Dzielinski, D. Sierociuk, Stability of discrete fractional order state-space systems. J. Vib. Control 14(9–10), 1543–1556 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  21. R.F. Gantmacher, The Theory of Matrices I, II (Chelsea, New York, 1959)

    MATH  Google Scholar 

  22. W.G. Glockle, T.F. Nonnenmacher, A fractional calculus approach to self-similar protein dynamics. Biophys. J. 68(1), 46–53 (1995)

    Article  Google Scholar 

  23. J. Hein, Z. McCarthy, N. Gaswick, B. McKain, K. Speer, Laplace transforms for the nabla-difference operator. Panam. Math. J. 21(3), 79–97 (2011)

    MathSciNet  MATH  Google Scholar 

  24. R. Hilfe (ed.), Applications of Fractional Calculus in Physics (World Scientific, River Edge, 2000)

    Google Scholar 

  25. F. Jarad, B. Kaymakalan, K. Ta, A new transform method in nabla discrete fractional calculus. Adv. Differ. Equ. 2012(1), 1–17 (2012)

    Article  MathSciNet  Google Scholar 

  26. F. Jarad, et al. On the stability of some discrete fractional nonautonomous systems. in Abstract and Applied Analysis, vol. 2012. (Hindawi Publishing Corporation, 2012)

  27. J. Jonnalagadda, Solutions of perturbed linear nabla fractional difference equations. Differ. Equ. Dyn. Syst. 22(3), 281–292 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  28. G.I. Kalogeropoulos, Matrix pencils and linear systems, Ph.D Thesis (City University, London 1985)

  29. T. Kaczorek, Practical stability of positive fractional discrete-time linear systems. Bull. Pol. Acad. Techn. Sci. 56(4), 313–318 (2008)

    Google Scholar 

  30. J. Klamka, Local controllability of fractional discrete-time semilinear systems. Acta Mech. Autom. 5, 55–58 (2011)

    Google Scholar 

  31. T.D. Lee, Can time be a discrete dynamical variable? Phys. Lett. B 122(3–4), 217–220 (1983)

    Article  Google Scholar 

  32. C. Lizama, lp-maximal regularity for fractional difference equations on UMD spaces. Math. Nachr. (2015). doi:10.1002/mana.201400326

  33. C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability. Proc. Amer. Math. Soc. (forthcoming)

  34. W. Lv, Existence and uniqueness of solutions for a discrete fractional mixed type sum-difference equation boundary value problem. Discrete Dyn. Nat. Soc. 501, 376261 (2015)

    MathSciNet  Google Scholar 

  35. J.A. Machado, M.E. Mata, A.M. Lopes, Fractional state space analysis of economic systems. Entropy 17(8), 5402–5421 (2015)

    Article  Google Scholar 

  36. A.B. Malinowska, D.F.M. Torres, Introduction to the Fractional Calculus of Variations, vol. 16 (Imperial College Press, London, 2012)

    Book  MATH  Google Scholar 

  37. D. Matignon, Stability results for fractional differential equations with applications to control processing. in Computational Engineering in Systems Applications, vol. 2 (Lille, France: IMACS, IEEE-SMC, 1996), pp. 963–968

  38. A. Nagai, Discrete Mittag-Leffler function and its applications. Publ. Res. Inst. Math. Sci. Kyoto/Univ. 1302, 1–20 (2003)

    MathSciNet  Google Scholar 

  39. I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering (Academic Press, San Diego, 1999)

    MATH  Google Scholar 

  40. M.R. Rahmat, M.S. Noorani, Caputo type fractional difference operator and its application on discrete time scales. Adv. Differ. Equ. 2015(1), 1–15 (2015)

    Article  MathSciNet  Google Scholar 

  41. M. Reni Sagayaraj, P. Manoharan, A study on qualitative properties of stochastic difference equations and stability. Global J. Pure Appl. Math. 11(5), 3121–3127 (2015)

    Google Scholar 

  42. S. Rezapour, S. Salehi, On the existence of solution for a \(k\)-dimensional system of three points nabla fractional finite difference equations. Bull. Iran. Math. Soc. 41(6), 1433–1444 (2015)

    MathSciNet  Google Scholar 

  43. A.P. Schinnar, The Leontief dynamic generalized inverse. Quart. J. Econ. 92(4), 641–652 (1978)

    Article  MATH  Google Scholar 

  44. D. Sierociuk, A. Dzielinski, G. Sarwas, I. Petras, I. Podlubny, T. Skovranek, Modelling heat transfer in heterogeneous media using fractional calculus. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 371(1990), 10 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  45. C. Yin et al., Robust stability analysis of fractional-order uncertain singular nonlinear system with external disturbance. Appl. Math. Comput. 269, 351–362 (2015)

    MathSciNet  Google Scholar 

  46. H. Zhang et al., Stability analysis for fractional-order linear singular delay differential systems. Discrete Dyn. Nat. Soc. 2014, 850279 (2014). doi:10.1155/2014/850279

Download references

Acknowledgments

I. Dassios is funded by Science Foundation Ireland (award 09/SRC/E1780).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis K. Dassios.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dassios, I.K. Stability and Robustness of Singular Systems of Fractional Nabla Difference Equations. Circuits Syst Signal Process 36, 49–64 (2017). https://doi.org/10.1007/s00034-016-0291-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-016-0291-x

Keywords

Navigation