Circuits, Systems, and Signal Processing

, Volume 35, Issue 6, pp 2017–2039 | Cite as

On The Optimization of Fractional Order Low-Pass Filters

  • Lobna A. Said
  • Samar M. Ismail
  • Ahmed G. Radwan
  • Ahmed H. MadianEmail author
  • Mohamed F. Abu El-Yazeed
  • Ahmed M. Soliman


This paper presents three different optimization cases for normalized fractional order low-pass filters (LPFs) with numerical, circuit and experimental results. A multi-objective optimization technique is used for controlling some filter specifications, which are the transition bandwidth, the stop band frequency gain and the maximum allowable peak in the filter pass band. The extra degree of freedom provided by the fractional order parameter allows the full manipulation of the filter specifications to obtain the desired response required by any application. The proposed mathematical model is further applied to a case study of a practical second- generation current conveyor (CCII)-based fractional low-pass filter. Circuit simulations are performed for two different fractional order filters, with orders 1.6 and 3.6, with cutoff frequencies 200 and 500 Hz, respectively. Experimental results are also presented for LPF of 4.46 kHz cutoff frequency using a fabricated fractional capacitor of order 0.8, proving the validity of the proposed design approach.


Fractional order element Low-pass filter Optimization CCII 


  1. 1.
    K. Biswas, L. Thomas, S. Chowdhury, B. Adhikari, S. Sen, Impedance behaviour of a microporous PMMA-film coated constant phase element’ based chemical sensor. Int. J. Smart Sens. Intell. Syst. 1(4), 922–939 (2008)Google Scholar
  2. 2.
    A. Bunde, S. Havlin, Fractals in Science (Springer, Amsterdam, 1995)zbMATHGoogle Scholar
  3. 3.
    D. Cafagna, Past and present-fractional calculus: a mathematical tool from the past for present engineers. IEEE Ind. Electron. Mag. 1(2), 35–40 (2007)MathSciNetCrossRefGoogle Scholar
  4. 4.
    H. Chen, Robust stabilization for a class of dynamic feedback uncertain nonholonomic mobile robots with input saturation. Int. J. Control Autom. Syst. 12(6), 1216–1224 (2014)CrossRefGoogle Scholar
  5. 5.
    T.F. Coleman, Y. Li, An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6(2), 418–445 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    A. Dumlu, K. Erenturk, Trajectory tracking control for a 3-DOF parallel manipulator using fractional-order control. IEEE Trans. Ind. Electron. 61(7), 3417–3426 (2014)CrossRefGoogle Scholar
  7. 7.
    T.J. Freeborn, B. Maundy, A.S. Elwakil, Field programmable analogue array implementation of fractional step filters. IET Circ. Device Syst. 4(6), 514–524 (2010)CrossRefGoogle Scholar
  8. 8.
    T.J. Freeborn, B. Maundy, A.S. Elwakil, Approximated fractional-order Chebyshev lowpass filters. Math. Prob. Eng. 2015. doi: 10.1155/2015/832468
  9. 9.
    E.A. Gonzalez, L. Dorcak, C.A. Monje, J. Valsa, F.S. Caluyo, I. Petras, Conceptual design of a selectable fractional-order differentiator for industrial applications. Fract. Calc. Appl. Anal. 17(3), 697–716 (2014)CrossRefzbMATHGoogle Scholar
  10. 10.
    T.C. Haba, G. Ablart, T. Camps, F. Olivie, Influence of the electrical parameters on the input impedance of a fractal structure realized on silicon. Chaos Soliton Fract. 24(2), 479–490 (2005)CrossRefGoogle Scholar
  11. 11.
    T. Helie, Simulation of fractional-order low-pass filters. IEEE/ACM Trans. Audio Speech Lang. Process. 22(11), 1636–1647 (2014)CrossRefGoogle Scholar
  12. 12.
    R.L. Magin, Fractional Calculus in Bioengineering (Begell House, Connecticut, 2006)Google Scholar
  13. 13.
    M. Nakagava, K. Sorimachi, Basic characteristics of a fractance device. IEICE Trans. Fundam. E75-A(12), 1814–1818 (1992)Google Scholar
  14. 14.
    K.B. Oldham, J. Spanier, The Fractional Calculus: Theory and Applications of Differentiation and Integration to Arbitrary Order (Dover Books on Mathematics, New York, 2006)zbMATHGoogle Scholar
  15. 15.
    I. Podlubny, I. Petras, B. Vinagre, P. O’leary, L. Dorcak, Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29, 281–296 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A.G. Radwan, A.M. Soliman, A.S. Elwakil, Design equations for fractional-order sinusoidal oscillators: four practical circuits examples. Int. J. Circ. Theor. Appl. 36(4), 473–492 (2008)CrossRefzbMATHGoogle Scholar
  17. 17.
    A.G. Radwan, A.S. Elwakil, A.M. Soliman, Fractional-order sinusoidal oscillators: Design procedure and practical examples. IEEE Trans. Circ. Syst. I 55(7), 2051–2063 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    A.G. Radwan, A.M. Soliman, A.S. Elwakil, First-order filters generalized to the fractional domain. J. Circuit Syst. Comput. 17(1), 55–66 (2008)CrossRefGoogle Scholar
  19. 19.
    A.G. Radwan, A.S. Elwakil, A.M. Soliman, On the generalization of second-order filters to the fractional-order domain. J. Circuit Syst. Comput. 18(2), 361–386 (2009)CrossRefGoogle Scholar
  20. 20.
    A.G. Radwan, A.M. Soliman, A.S. Elwakil, A. Sedeek, On the stability of linear systems with fractional-order elements. Chaos Soliton Fract. 40(5), 2317–2328 (2009)CrossRefzbMATHGoogle Scholar
  21. 21.
    K. Saito, M. Sugi, Simulation of power-law relaxations by analog circuits: fractal distribution of relaxation times and non-integer exponents. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. E7–b(2), 1627–1634 (1993)Google Scholar
  22. 22.
    R. Schaumann, M.E. Van Valkenburg, Design of Analog Filters (Oxford University Press, Oxford, 2001)Google Scholar
  23. 23.
    A. Shamim, A.G. Radwan, K.N. Salama, Fractional smith chart theory and application. IEEE Microw. Wirel. Compon. Lett. 21(3), 117–119 (2011)CrossRefGoogle Scholar
  24. 24.
    A.M. Soliman, Ford-Girling equivalent circuit using CCII. Electron. Lett. 14(22), 721–722 (1978)CrossRefGoogle Scholar
  25. 25.
    A.M. Soliman, Current conveyor filters: classification and review. Microelectron. J. 29, 133–149 (1998)CrossRefGoogle Scholar
  26. 26.
    A. Soltan, A.G. Radwan, A.M. Soliman, Fractional order filter with two fractional elements of dependant orders. Microelectron. J. 43(11), 818–827 (2012)CrossRefGoogle Scholar
  27. 27.
    A. Soltan, A.G. Radwan, A.M. Soliman, CCII based fractional filters of different orders. J. Adv. Res. 5, 157–164 (2014)CrossRefGoogle Scholar
  28. 28.
    A. Soltan, A. G. Radwan, A. M. Soliman, Fractional order butterworth filter:active and passive realizations. IEEE J. Emerg. Sel. Top. Circuits Syst. 3(3), 346–354 (2013)Google Scholar
  29. 29.
    M. Sugi, Y. Hirano, Y.F. Miura, K. Saito, Simulation of fractal immittance by analog circuits: an approach to the optimized circuits. IEICE Trans. Fundam. Electron. 82(8), 205–209 (1999)Google Scholar
  30. 30.
    J. Valsa, P. Dvorak, M. Friedl, Network model of the CPE. Radioengineering 20(3), 619–626 (2011)Google Scholar
  31. 31.
    J. Valsa, J. Vlach, RC models of a constant phase element. Int. J. Circuit Theory Appl. 41(1), 59–67 (2013)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Lobna A. Said
    • 1
  • Samar M. Ismail
    • 1
  • Ahmed G. Radwan
    • 2
    • 3
  • Ahmed H. Madian
    • 3
    • 4
    Email author
  • Mohamed F. Abu El-Yazeed
    • 5
  • Ahmed M. Soliman
    • 5
  1. 1.Faculty of IETGerman University in Cairo (GUC)CairoEgypt
  2. 2.Department of Engineering Mathematics and PhysicsCairo UniversityGizaEgypt
  3. 3.NISC Research CenterNile UniversityCairoEgypt
  4. 4.Radiation Engineering DepartmentNCRRT, Egyptian Atomic Energy, AuthorityCairoEgypt
  5. 5.Electronics and Communications Engineering DepartmentCairo UniversityCairoEgypt

Personalised recommendations