Skip to main content
Log in

Modeling and Analysis of On-Chip Single and H-tree Distributed RLC Interconnects

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents novel methods for modeling and analysis of on-chip Single and H-tree distributed resistance inductance capacitance interconnects. The matrix pade-type approximation and scaling and squaring methods are employed for the numerical estimation of delay in single interconnect, and H-tree interconnects. The proposed models, which are based on these methods, provide rational function approximation for obtaining a passive interconnect model. Multiple single input single output model approximated transfer functions are developed for H-tree interconnects structure. With the equivalent reduced order lossy interconnect transfer functions, finite ramp responses are obtained, and line delay is estimated for various line lengths, input ramp rise times, source resistances, parasitic capacitances and load capacitances. In order to demonstrate the accuracy of proposed models, the estimated 50 % delay values are compared with the standard HSPICE W-element model and are found to be in good agreement. The proposed models worst case 50 % delay errors of single interconnect are 0.27 and 0.24 % respectively, while the worst case 50 % delay errors of H-tree structure are 5.73 and 3.94 % respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. K. Banerjee, A. Mehrotra, Analysis of on-chip inductance effects for distributed RLC interconnects. IEEE Trans. CAD. 21(8), 904–915 (2002)

    Article  Google Scholar 

  2. C. Brezinski, Rational approximation to formal power series. J. Approx. Theory 25(4), 295–317 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  3. C. Brezinski, Padé-Type Approximation and General Orthogonal Polynomials (Birkh Äauser-Verlag, Basel, 1980)

    Book  MATH  Google Scholar 

  4. I. Chanodia, D. Velenis, Parameter variations and crosstalk noise effects on high performance H-tree clock distribution networks. Analog Integr. Circuits Signal Process. 56(1–2), 13–21 (2008)

    Article  Google Scholar 

  5. A. Draux, Approximants de Type Padé et de Table. Little: Publication A, University of Lille, Lille, No. 96 (1983)

  6. W.C. Elmore, The transient response of damped linear networks with particular regard to wideband amplifiers. J. Appl. Phys. 19(1), 55–63 (1948)

    Article  Google Scholar 

  7. M.A. El-Moursy, E.G. Friedman, Exponentially tapered H-tree clock distribution networks. IEEE Trans. VLSI Syst. 13(8), 971–975 (2005)

    Article  Google Scholar 

  8. T. Eudes, B. Ravelo, Analysis of multi-gigabits signal integrity through clock H-tree. Int. J. Circuit Theory Appl. 41(4), 535–549 (2012)

    Google Scholar 

  9. E.G. Friedman (ed.), High Performance Clock Distribution Networks (Kluwer Academic Publishers, Norwell, 1997). ISBN # 0-7923-9967-6

    MATH  Google Scholar 

  10. R. Gupta, B. Tutuianu, L.T. Pileggi, The Elmore delay as a bound for RC trees with generalized input signals. IEEE Trans. Comput. Aided Des. 16(1), 95–104 (1997)

    Article  Google Scholar 

  11. N.J. Higham, The scaling and squaring method for the matrix exponential revisited. SIAM Rev. 51, 747–764 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Y.I. Ismail, E.G. Friedman, J.L. Neves, Equivalent Elmore delay for RLC trees. IEEE Trans. Comput. Aided Des. 19(1), 83–97 (2000)

    Article  Google Scholar 

  13. Y.I. Ismail, E.G. Friedman, Fast and accurate simulation of tree structured interconnect, in Proceedings of the 43rd IEEE circuits and systems Mid-west Symposium (2000), pp. 1130–1134

  14. Y.I. Ismail, E.G. Friedman, Effects of inductance on the propagation delay and repeater insertion in VLSI circuits. IEEE Trans. VLSI 8(2), 195–206 (2000)

    Article  Google Scholar 

  15. X. Ji, L. Ge, Z. Wang, Analysis of on-chip distributed interconnects based on Pade expansion. J. Control Theory Appl. 7(1), 92–96 (2009)

    Article  MathSciNet  Google Scholar 

  16. A.B. Kahng, S. Muddu, An analytical delay model for RLC interconnects. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 16(12), 1507–1514 (1997)

    Article  Google Scholar 

  17. A.B. Kahng, S. Muddu, Two-pole analysis of interconnection trees, in Proceedings of IEEE MCMC Conference (MCMC-95), Santa Cruz, California, USA, (1995), pp. 105–110

  18. X.-C. Li, J.-F. Mao, H.-F. Huang, Accurate analysis of interconnect trees with distributed RLC model and moment matching. IEEE Trans. Microw. Theory Tech. 52(9), 2199–2206 (2004)

    Article  Google Scholar 

  19. C. Li, X. Zhu, C. Gu, Matrix Padé-type method for computing the matrix exponential. Appl. Math. 2, 247–253 (2011)

    Article  MathSciNet  Google Scholar 

  20. W.-K. Loo, K.-S. Tan, Y.-K. Teh, A study and design of CMOS H-tree clock distribution network in system-on-chip, in Proceedings of the 8th IEEE international conference on ASIC, Changsha, Hunan, China (2009), pp. 411–414

  21. N. Rakuljic, I. Galton, Tree-structured DEM DACs with arbitrary numbers of levels. IEEE Trans. CAS I 52(2), 313–322 (2010)

    Article  MathSciNet  Google Scholar 

  22. B. Ravelo, A.K. Jastrzebski, Modelling of symmetrical distributed clock RC H-tree, in Proceedings of IEEE international symposium on electromagnetic compatibility (EMC EUROPE) (2012), pp. 1–6

  23. J. Rosenfeld, E.G. Friedman, Design methodology for global resonant H-tree clock distribution networks. IEEE Trans. VLSI Syst. 15(2), 135–148 (2007)

    Article  Google Scholar 

  24. S. Roy, A. Dounavis, Closed-form delay and crosstalk models for RLC on-chip interconnects using a matrix rational approximation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 28(10), 1481–1492 (2009)

    Article  Google Scholar 

  25. J. Rubinstein, P. Penfield Jr, M.A. Horowitz, Signal delay in RC tree networks. IEEE Trans. Comput. Aided Des. 2(3), 202–211 (1983)

    Article  Google Scholar 

  26. T. Sakurai, Closed-form expressions for interconnection delay, coupling, and crosstalk in VLSI’s. IEEE Trans. Electron Devices 40(1), 118–124 (1993)

    Article  MathSciNet  Google Scholar 

  27. Semiconductor Industry Association, The International Technology Roadmap for Semiconductors (1999)

  28. K.T. Tang, E.G. Friedman, Delay and power expressions characterizing a CMOS inverter driving an RLC load, in Proceedings of the IEEE international symposium on circuits and systems (2000), pp. III.283–III.286

  29. C.-W.A. Tsao, C.-K. Koh, A clock tree router for general skew constraints. J. ACM Trans. Des. Autom. Electron. Syst. 7(3), 359–379 (2002)

    Article  Google Scholar 

  30. K. Yamakoshi, M. Ino, Generalized Elmore delay expression for distributed RC tree networks. Electron. Lett. 29(7), 617–618 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mummaneni Kavicharan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kavicharan, M., Murthy, N.S., Rao, N.B. et al. Modeling and Analysis of On-Chip Single and H-tree Distributed RLC Interconnects. Circuits Syst Signal Process 35, 3049–3065 (2016). https://doi.org/10.1007/s00034-015-0188-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0188-0

Keywords

Navigation