Skip to main content
Log in

Epoch Extraction by Phase Modelling of Speech Signals

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Epochs are instants of significant excitation of vocal-tract system in speech production process. In this paper, we attempt to extract information about epochs from phase spectra of speech signals. The phase spectrum of speech is modelled as the response of an allpass (AP) filter, and the resulting error signal is used for epoch extraction. The parameters of AP model are estimated by imposing sparsity constraints on the error signal. The error signal, thus obtained, exhibits prominent peaks at epoch locations. The epochal candidates obtained from the error signal are refined using a dynamic programming algorithm. The performance of the proposed method is consistent across genders and is comparable with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. T.V. Ananthapadmanabha, B. Yegnanarayana, Epoch extraction of voiced speech. Acoust. Speech Signal Process. IEEE Trans. 23(6), 562–570 (1975)

    Article  Google Scholar 

  2. T.V. Ananthapadmanabha, B. Yegnanarayana, Epoch extraction from linear prediction residual for identification of closed glottis interval. Acoust. Speech Signal Process. IEEE Trans. ASSP 27(4), 309–319 (1979)

    Article  Google Scholar 

  3. B. Andrews, R.A. Davis, F.J. Breidt, Maximum likelihood estimation for all-pass time series models. J. Multivar. Anal. 97, 1638–1659 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. B.S. Atal, S.L. Hanauer, Speech analysis and synthesis by linear prediction of the speech wave. J. Acoust. Soc. Am. 50(2B), 637–655 (1971). doi:10.1121/1.1912679

    Article  Google Scholar 

  5. A. Bouzid, N. Ellouze, Multiscale product of electroglottogram signal for glottal closure and opening instant detection. In: IMACS Multiconference on Computational Engineering in Systems Application, pp. 106–109 (2006)

  6. F.J. Breidt, R.A. Davis, A.A. Trindade, Least absolute deviation estimation for all-pass time series models. Ann. Stat. 29, 919–946 (2001)

    MathSciNet  MATH  Google Scholar 

  7. M. Brookes, Voicebox: speech processing toolbox for matlab. http://www.ee.ic.ac.uk/hp/staff/dmb/voicebox/voicebox.html (1997)

  8. M. Brookes, P.A. Naylor, J. Gudnason, A quantitative assessment of group delay methods for identifying glottal closures in voiced speech. Audio, Speech Lang. Process. IEEE Trans. 14(2), 456–466 (2006)

    Article  Google Scholar 

  9. J.K. Chen, F.K. Soong, An N-best candidates-based discriminative training for speech recognition applications. Speech Audio Process. IEEE Trans. 2(1), 206–216 (1994)

    Article  Google Scholar 

  10. Y.M. Cheng, D. O’Shaughnessy, Automatic and reliable estimation of glottal closure instant and period. Acoust. Speech Signal Process. IEEE Trans. 37(12), 1805–1815 (1989)

    Article  Google Scholar 

  11. C.Y. Chi, J.Y. Kung, A new identification algorithm for allpass systems by higher-order statistics. Signal Process. 41, 239–256 (1995)

    Article  MATH  Google Scholar 

  12. H.M. Chien, H.L. Yang, C.Y. Chi, Parametric cumulant based phase estimation of 1-D and 2-D nonminimum phase systems by allpass filtering. Signal Process. IEEE Trans. 45, 1742–1762 (1997)

    Article  MATH  Google Scholar 

  13. T.M. Cover, J.A. Thomas, Elements of Information Theory. Wiley series in Telecommunications and Signal Processing (Wiley-Interscience, A John Wiley & Sons, Inc., Hoboken, NJ, 2006)

  14. T. Drugman, T. Dutoit, Glottal closure and opening instant detection from speech signals. In: Interspeech, pp. 2891–2894 (2009)

  15. T. Drugman, M. Thomas, J. Gudnason, P.A. Naylor, T. Dutoit, Detection of glottal closure instants from speech signals: a quantitative review. Audio, Speech Lang. Process. IEEE Trans. 20(3), 994–1006 (2012)

    Article  Google Scholar 

  16. J. Gauffin, J. Sundberg, Spectral correlates of glottal voice source waveform characteristics. J. Speech Hear. Res. 32, 556–565 (1989)

  17. N. Henrich, C. D’ Alessandro, B. Doval, M. Castellengo, On the use of the derivative of electroglottographic signals for characterization of nonpathological phonation. J. Acoust. Soc. Am. 115(3), 1321–1332 (2004)

    Article  Google Scholar 

  18. W. Hess, H. Indefrey, Accurate pitch determination of speech signals by means of a laryngograph. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 73–76 (1984)

  19. N. Hurley, S. Rickard, Comparing measures of sparsity. Info. Theory, IEEE Trans. 55(10), 4723–4741 (2009)

    Article  MathSciNet  Google Scholar 

  20. J. Kane, C. Gobl, Evaluation of glottal closure instant detection in a range of voice qualities. Speech Commun. 55, 295–314 (2013)

    Article  Google Scholar 

  21. F.L.E. Lecluse, M.P. Brocaar, J. Verschurre, The electroglottography and its relation to glottal activity. Folia Phoniatrica 27(3), 215–224 (1975)

  22. C. Ma, Y. Kamp, L.F. Willems, A Frobenius norm approach to glottal closure detection from the speech signal. Speech Audio Process. IEEE Trans. 2(2), 258–265 (1994)

    Article  Google Scholar 

  23. J. Makhoul, Linear prediction: a tutorial review. Proc. IEEE 63(4), 561–580 (1975)

    Article  Google Scholar 

  24. J.M. Mendel, Tutorial on higher-order statistics (spectra) in signal processing and system theory: theoretical results and some applications. Proc. IEEE 79(3), 278–305 (1991)

    Article  Google Scholar 

  25. P.S. Murthy, B. Yegnanarayana, Robustness of group-delay-based method for extraction of significant instants of excitation from speech signals. Speech Audio Process. IEEE Trans. 7(6), 609–619 (1999)

    Article  Google Scholar 

  26. K.S.R. Murty, B. Yegnanarayana, Combining evidence from residual phase and MFCC features for speaker recognition. IEEE Signal Process. Lett. 13(1), 52–55 (2006)

    Article  Google Scholar 

  27. K.S.R. Murty, B. Yegnanarayana, Epoch extraction from speech signals. Audio, Speech Lang. Process. IEEE Trans. 16(8), 1602–1613 (2008)

    Article  Google Scholar 

  28. J.L. Navarro-Mesa, E. Lleida-Solano, A. Moreno-Bilbao, A new method for epoch detection based on the Cohens class of time frequency representations. IEEE Signal Process. Lett. 8(8), 225–227 (2001)

    Article  Google Scholar 

  29. P.A. Naylor, A. Kounoudes, J. Gudnason, M. Brookes, Estimation of glottal closure instants in voiced speech using the DYPSA algorithm. Audio, Speech Lang. Process. IEEE Trans. 15(1), 34–43 (2007)

    Article  Google Scholar 

  30. A. Neocleous,, P.A. Naylor, Voice source parameters for speaker verification. In: European Signal Processing Conference, pp. 697–700 (1998)

  31. A.V. Oppenheim, R.W. Schafer, J.R. Buck, Discrete-Time Signal Processing. Signal processing series, 2nd edn. (Prentice Hall Inc, Upper Saddle River, NJ, USA, 1999)

    Google Scholar 

  32. K.K. Paliwal, L.D. Alsteris, On the usefulness of STFT phase spectrum in human listening tests. Speech Commun. 45(2), 153–170 (2005). doi:10.1016/j.specom.2004.08.001

    Article  Google Scholar 

  33. M. Plumpe, T. Quatieri, D. Reynolds, Modeling of the glottal flow derivative waveform with application to speaker identification. Speech Audio Process. IEEE Trans. 7(5), 569–586 (1999). doi:10.1109/89.784109

    Article  Google Scholar 

  34. A.P. Prathosh, T.V. Ananthapadmanabha, A.G. Ramakrishnan, Epoch extraction based on integrated linear prediction residual using plosion index. Audio, Speech Lang. Process. IEEE Trans. 21(12), 2471–2480 (2013)

    Article  Google Scholar 

  35. L.R. Rabiner, R.W. Schafer, Theory and Applications to Digital Speech Processing, 1st edn. (Pearson Higher Education, Inc., Upper Saddle River, NJ, 2010)

    Google Scholar 

  36. K.S. Rao, S.R.M. Prasanna, B. Yegnanarayana, Determination of instants of significant excitation in speech using hilbert envelope and group delay function. IEEE Signal Process. Lett. 14(10), 762–765 (2007)

    Article  Google Scholar 

  37. K.S. Rao, B. Yegnanarayana, Prosody modification using instants of significant excitation. Audio, Speech Lang. Process. IEEE Trans. 14(3), 972–980 (2006)

    Article  Google Scholar 

  38. K.S. Rao, B. Yegnanarayana, Duration modification using glottal closure instants and vowel onset points. Speech Commun. 51, 1263–1269 (2009)

    Article  Google Scholar 

  39. R. Schwartz, Y.L. Chow, The N-best algorithm: an efficient and exact procedure for finding the N most likely sentence hypotheses. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 81–84 (1990)

  40. R. Smits, B. Yegnanarayana, Determination of instants of significant excitation in speech using group delay function. Speech Audio Process. IEEE Trans. 3(5), 325–333 (1995)

    Article  Google Scholar 

  41. A.N. Sobakin, Digital computer determination of formant parameters of the vocal tract from a speech signal. Sov. Phys. Acoust 18, 84–90 (1972)

    Google Scholar 

  42. H. Stark, J.W. Woods, Probability and Random Processes with Applications to Signal Processing, 3rd edn. (Prentice Hall PTR, Upper Saddle River, NJ, 2002)

    Google Scholar 

  43. H.W. Strube, Determination of the instant of glottal closures from the speech wave. J. Acoust. Soc. Am. 56, 1625–1629 (1974)

    Article  Google Scholar 

  44. A. Swami, HOSA- Higher order spectral analysis toolbox. www.mathworks.in/matlabcentral/fileexchange/3013-hosa-higher-order-spectral-analysis-toolbox (2003)

  45. M.R.P. Thomas, J. Gudnason, P.A. Naylor, Estimation of glottal closing and opening instants in voiced speech using the YAGA algorithm. Audio, Speech Lang. Process. IEEE Trans. 20(1), 82–91 (2012)

    Article  Google Scholar 

  46. M.R.P. Thomas, P.A. Naylor, The sigma algorithm: a glottal activity detector for electroglottographic signals. Audio, Speech Lang. Process. IEEE Trans. 17(8), 1557–1566 (2009)

    Article  Google Scholar 

  47. V.N. Tuan, C. D’ Alessandro, Robust glottal closure detection using the wavelet transform. In: The European Conference on Speech Technology, pp. 2805–2808 (1999)

  48. D.E. Veeneman, S.L. BeMent, Automatic glottal inverse filtering from speech and electroglottographic signals. Acoustics, Speech Signal Process. IEEE Trans. 33(2), 369–377 (1985)

    Article  Google Scholar 

  49. K. Vijayan, K.S.R. Murty, Epoch extraction from allpass residual of speech signals. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1493–1497 (2014)

  50. D.Y. Wong, J.D. Markel, A.H. Gray, Least squares glottal closure inverse filtering from the acoustic speech waveform. Acoustics, Speech Signal Process. IEEE Trans. ASSP–27(4), 35–355 (1979)

    Google Scholar 

  51. B. Yegnanarayana, K.S.R. Murty, Event-based instantaneous fundamental frequency estimation from speech signals. Audio, Speech Lang. Process. IEEE Trans. 17(4), 614–624 (2009)

    Article  Google Scholar 

  52. B. Yegnanarayana, P.S. Murty, Enhancement of reverberant speech using LP residual signal. Speech Audio Process. IEEE Trans. 8(3), 267–281 (2000)

    Article  Google Scholar 

  53. B. Yegnanarayana, R.N.J. Veldhuis, Extraction of vocal-tract system characteristics from speech signals. Speech Audio Process. IEEE Trans. 6(4), 313–327 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karthika Vijayan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vijayan, K., Murty, K.S.R. Epoch Extraction by Phase Modelling of Speech Signals. Circuits Syst Signal Process 35, 2584–2609 (2016). https://doi.org/10.1007/s00034-015-0166-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0166-6

Keywords

Navigation