Advertisement

Circuits, Systems, and Signal Processing

, Volume 35, Issue 5, pp 1531–1543 | Cite as

A 11.2 mW 48–62 GHz Low Noise Amplifier in 65 nm CMOS Technology

  • Xiao Peng YuEmail author
  • Wen Lin Xu
  • Chen Feng
  • Zheng Hao Lu
  • Wei Meng Lim
  • Kiat Seng Yeo
Article

Abstract

In this paper, a wideband low noise amplifier (LNA) for 60 GHz wireless applications is presented. A single-ended two-stage cascade topology is utilized to realize an ultra-wideband and flat gain response. The first stage adopts a current-reused topology that performs the more than 10 GHz ultra-wideband input impedance matching. The second stage is a cascade common source amplifier that is used to enhance the overall gain and reverse isolation. By proper optimization of the current-reused topology and stagger turning technique, the two-stage cascade common source LNA provides low power consumption and gain flatness over an ultra-wide frequency band with relatively low noise. The LNA is fabricated in Global Foundries 65 nm RFCMOS technology. The measurement results show a maximum \(S_{21}\) gain of 11.4 dB gain with a \(-\)3 dB bandwidth from 48 to 62 GHz. Within this frequency range, the measured \(S_{11}\) and \(S_{12}\) are less than \(-\)10 dB and the measured DC power consumption is only 11.2 mW from a single 1.5 V supply.

Keywords

Low noise amplifier Low power Millimeter wave Nano-scale CMOS Ultra-wideband 

Notes

Acknowledgments

This work was supported by National Science Foundation China (Grant No. 61274034) and Natural Science Foundation of Jiangsu Province of China under Grant No. BK2012644 and the ZJU-SUTD Joint research project under the Fundamental Research Funds for the Central Universities (No. 2015XZZX001-01).

References

  1. 1.
    B.Y. Chi, Z. Chun, Z.H. Wang, Bandwidth extension for ultra-wideband CMOS low-noise amplifiers, in IEEE International Symposium on Circuits and Systems, (2008), pp. 968–971Google Scholar
  2. 2.
    E. Cohen, S. Ravid, D. Ritter, An ultra low power LNA with 15 dB gain and 4.4 dB NF in 90 nm CMOS process for 60 GHz phase array radio, in IEEE Radio Frequency Integrated Circuits Symposium, (2008), pp. 61–64Google Scholar
  3. 3.
    C.H. Doan, S. Emami, A.M. Niknejad, R.W. Brodersen, Millimeter-wave CMOS design. IEEE J. Solid-State Circuits 40(1), 144–155 (2005)CrossRefGoogle Scholar
  4. 4.
    H.H. Hsieh, P.Y. Wu, C.P. Jou, F.L. Hsueh, G.W. Huang, 60 GHz high-gain low-noise amplifiers with a common-gate inductive feedback in 65 nm CMOS, in IEEE Radio Frequency Integrated Circuits Symposium (RFIC), (2011), pp. 1–4Google Scholar
  5. 5.
    M.-T. Hsu, Y.-C. Chang, Y.-Z. Huang, Design of low power UWB LNA based on common source topology with current-reused technique. Microelectron. J. 44(12), 1223–1230 (2013)MathSciNetCrossRefGoogle Scholar
  6. 6.
    W.M. Lim, M.A. Do, J.G. Ma, K.S. Yeo, A broadband CMOS LNA for WLAN applications, in IEEE Conference on Ultra Wideband Systems and Technologies, (2003), pp. 42–46Google Scholar
  7. 7.
    Y.J. Lin, S.S. Hsu, J.D. Jin, C.Y. Chan, A 3.1–10.6 GHz ultra-wideband CMOS low noise amplifier with current-reused technique. IEEE Microw. Wirel. Compon. Lett. 17(3), 232–234 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Natarajan, S. Nicolson, M.D. Tsai, B. Floyd, A 60 GHz variable-gain LNA in 65 nm CMOS, in IEEE Asian Solid-State Circuits Conference, (2008), pp. 117–120Google Scholar
  9. 9.
    S. Pellerano, Y. Palaskas, K. Soumyanath, A 64 GHz 6.5 dB NF 15.5 dB gain LNA in 90 nm CMOS, in IEEE Solid State Circuits Conference, (2007), pp. 352–355Google Scholar
  10. 10.
    G. Sapone, G. Palmisano, A 3–10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication. IEEE Trans. Microw. Theory Tech. 59(3), 678–686 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Shekhar, J.S. Walling, D.J. Allstot, Bandwidth extension techniques for CMOS amplifiers. IEEE J. Solid-State Circuits 41(11), 2424–2439 (2006)CrossRefGoogle Scholar
  12. 12.
    J. Shim, T. Yang, J. Jeong, Design of low power CMOS ultra wide band low noise amplifier using noise canceling technique. Microelectron. J. 44(9), 821–826 (2013)CrossRefGoogle Scholar
  13. 13.
    A.F. Tong, W.M. Lim, C.B. Sia, K.S. Yeo, Z.L. Teng, P.F. Ng, RFCMOS unit width optimization technique. IEEE Trans. Microw. Theory Tech. 55(9), 1844–1853 (2007)CrossRefGoogle Scholar
  14. 14.
    S. Toofan, A.R. Rahmati, A. Abrishamifar, G.R. Lahiji, Low power and high gain current reuse LNA with modified input matching and inter-stage inductors. Microelectron. J. 39(12), 1534–1537 (2008)CrossRefGoogle Scholar
  15. 15.
    C.C. Wu, M.F. Chou, W.S. Wuen, K. A. Wen, A low power CMOS low noise amplifier for ultra-wideband wireless applications, in IEEE International Symposium on Circuits and Systems, (2005), pp. 5063–5066Google Scholar
  16. 16.
    T. Yao, M. Gordon, K. Yau, M.T. Yang, S.P. Voinigescu, 60-GHz PA and LNA in 90-nm RF-CMOS, in IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, (2006), p. 4Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Xiao Peng Yu
    • 1
    Email author
  • Wen Lin Xu
    • 1
  • Chen Feng
    • 1
  • Zheng Hao Lu
    • 2
  • Wei Meng Lim
    • 2
  • Kiat Seng Yeo
    • 3
  1. 1.Institute of VLSI DesignZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.School of EEENanyang Technological UniversitySingaporeSingapore
  3. 3.Singapore University of Technology and DesignSingaporeSingapore

Personalised recommendations