Advertisement

Circuits, Systems, and Signal Processing

, Volume 35, Issue 5, pp 1705–1727 | Cite as

Statistical Distribution of Difference of the Maximum-Likelihood Angle-of-Arrival Spectra

  • Joon-Ho LeeEmail author
  • Sung-Woo Cho
  • So-Hee Jeong
  • Eun-Kyung Lee
Article

Abstract

We consider the performance analysis of the maximum-likelihood (ML) angle-of-arrival (AOA) estimation algorithm in this paper. Based on the observation that the ML AOA spectrum is noncentral chi-square distributed with known degree of freedom and known noncentrality, we propose how to numerically evaluate the probability density function of the difference between two ML spectra associated with two different directions. By judiciously choosing the two different angles, we can analytically determine the probability that the ML spectrum at the nearest grid is greater than the ML spectrum at the second nearest grid by arbitrary value. Numerical examples are used to validate the derived expressions.

Keywords

Performance analysis Angle of arrival (AOA) Maximum likelihood (ML) Probability density function (PDF) 

Notes

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2A10012245).

References

  1. 1.
    M.L. Bencheikh, Y. Wang, Combined ESPRIT-RootMUSIC for DOA-DOD estimation in polarimetric bistatic MIMO radar. Prog. Electromagn. Res. Lett. 22, 109–117 (2011)CrossRefGoogle Scholar
  2. 2.
    D. Byrne, M. O’Halloran, M. Glavin, E. Jones, Data independent radar beamforming algorithms for breast cancer detection. Prog. Electromagn. Res. 107, 331–348 (2010)CrossRefGoogle Scholar
  3. 3.
    S.-W. Cho, J.-H. Lee, Efficient implementation of the Capon beamforming using the Levenberg–Marquardt scheme for two dimensional AOA estimation. Prog. Electromagn. Res. 137, 19–34 (2013)CrossRefGoogle Scholar
  4. 4.
    A. Ferrol, P. Larzabal, M. Viberg, On the asymptotic performance analysis of subspace DOA estimation in the presence of modeling errors: case of MUSIC. IEEE Trans. Signal Process. 54(3), 907–920 (2006)CrossRefGoogle Scholar
  5. 5.
    X. Gu, Y. Zhang, Resolution threshold analysis of MUSIC algorithm in radar range imaging. Prog. Electromagn. Res. B 31, 297–321 (2011)CrossRefGoogle Scholar
  6. 6.
    R.A. Horn, C.R. Johnson, Matrix analysis (Cambridge Univ. Press, Cambridge, 1986)Google Scholar
  7. 7.
    H. Krim, P. Forster, J.G. Proakis, Operator approach to performance analysis of root-MUSIC and root-min-norm. IEEE Trans. Signal Process. 40(7), 1687–1696 (1992)CrossRefzbMATHGoogle Scholar
  8. 8.
    J.-H. Lee, S.-W. Cho, I.-S. Choi, Newton-type method in spectrum estimaion-based AOA estimation. IEICE Electron. Exp. 9(14) (2012)Google Scholar
  9. 9.
    J.-H. Lee, Y.-S. Jeong, S.-W. Cho, W.-Y. Yeo, K.S.J. Pister, Application of the Newton method to improve the accuracy of TOA estimation with the beamforming algorithm and the MUSIC algorithm. Prog. Electromagn. Res. 116, 475–515 (2011)CrossRefGoogle Scholar
  10. 10.
    J.-H. Lee, S.-W. Cho, S.-H. Jeong, Application of the Levenberg–Marquardt scheme to the MUSIC algorithm for AOA estimation. Int. J. Antennas and Propag. 402842, 1–8 (2013)Google Scholar
  11. 11.
    J.-H. Lee, S.-W. Cho, H.-J. Moon, Application of the alternating projection strategy to the Capon beamforming and the MUSIC algorithm for azimuth/elevation AOA estimation. J. Electromagn. Waves Appl. 27(12), 1439–1454 (2013)CrossRefGoogle Scholar
  12. 12.
    J.-H. Lee, S.-W. Cho, Performance improvement of the AOA estimation algorithm using the Newton iteration. Appl. Comput. Electromagn. Soc. J. 28(3), 249–272 (2013)Google Scholar
  13. 13.
    J. Liang, D. Liu, Two L-shaped array-based 2-D DOAs estimation in the presence of mutual coupling. Prog. Electromagn. Res. 112, 273–298 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Li, H. Ling, Improved current decomposition in helical antennas using the ESPRIT algorithm. Prog. Electromagn. Res. 106, 279–293 (2010)CrossRefGoogle Scholar
  15. 15.
    J.E. Mooney, Z. Ding, L.S. Riggs, Performance analysis of a GLRT automated target discrimination scheme. IEEE Trans. Antennas Propag. 49(12), 1827–1835 (2001)CrossRefGoogle Scholar
  16. 16.
    S.U. Pillai, B.H. Kwon, Performance analysis of MUSIC-type high resolution estimators for direction finding in correlated and coherent scenes. IEEE Trans. Acoust. Speech Signal Process. 37(8), 1176–1189 (1989)CrossRefGoogle Scholar
  17. 17.
    B.D. Rao, K.V.S. Hari, Performance analysis of root-MUSIC. IEEE Trans. Acoust. Speech Signal Process. 37(8), 1939–1949 (1989)CrossRefGoogle Scholar
  18. 18.
    P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramer–Rao bound. IEEE Trans. Acoust. Speech Signal Process. 37(5), 720–741 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    P. Stoica, A. Nehorai, MUSIC, maximum likelihood, and Cramer–Rao bound: further results and comparisons. IEEE Trans. Acoust. Speech Signal Process. 38(12), 2140–2150 (1990)CrossRefGoogle Scholar
  20. 20.
    A.L. Swindlehurst, T. Kailath, A performance analysis of subspace-based methods in the presence of model errors. I. The MUSIC algorithm. IEEE Trans. Signal Process. 40(7), 1758–1774 (1992)CrossRefzbMATHGoogle Scholar
  21. 21.
    P. Yang, F. Yang, Z.-P. Nie, DOA estimation with sub-array divided technique and interporlated ESPRIT algorithm on a cylindrical conformal array antenna. Prog. Electromagn. Res. 103, 201–216 (2010)CrossRefGoogle Scholar
  22. 22.
    Q.T. Zhang, Probability of resolution of the MUSIC algorithm. IEEE Trans. Signal Process. 43(4), 978–987 (1995)CrossRefGoogle Scholar
  23. 23.
    W. Zhang, A. Hoorfar, L. Li, Through-the-wall target localization with time reversal MUSIC method. Prog. Electromagn. Res. 106, 75–89 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Joon-Ho Lee
    • 1
    Email author
  • Sung-Woo Cho
    • 2
  • So-Hee Jeong
    • 1
  • Eun-Kyung Lee
    • 1
  1. 1.Department of Information and Communication EngineeringSejong UniversitySeoulKorea
  2. 2.LIG Nex1 Co., Ltd.Seongnam-CityKorea

Personalised recommendations