Advertisement

Circuits, Systems, and Signal Processing

, Volume 35, Issue 5, pp 1665–1675 | Cite as

Networked Reliable Synchronization of Chaotic Lur’e Systems with Sector- and Slope-Restricted Nonlinearities

  • Dedong YangEmail author
Article

Abstract

This paper investigates the networked reliable synchronization problem of chaotic Lur’e systems containing the sector- and slope-restricted nonlinearities. The reliable synchronization of chaotic Lur’e systems is achieved based on networked control techniques. Moreover, some sufficient conditions are obtained and these conditions depend on various network-related parameters, fault indicating matrices, sector and slope bounds. Finally, a numerical example is provided to illustrate the validity of the proposed method.

Keywords

Lur’e systems Networked control Reliable control  Synchronization 

Notes

Acknowledgments

This work was supported by the Natural Science Foundation of China under Grants 61203076, the Natural Science Foundation of Tianjin City under Grant 13JCQNJC03500, and the Natural Science Foundation of Hebei Province under Grant F2012202100.

References

  1. 1.
    S. Boyd, L.E. Ghauoi, E. Feron, V. Balakrishan, Linear Matrix Inequalities in System and Control Theory (SIAM, Philadelphia, 1994)CrossRefGoogle Scholar
  2. 2.
    J.D. Cao, H.X. Li, D.W.C. Ho, Synchronization criteria of Lur’e systems with time-delay feedback control. Chaos Soliton. Fract. 23(4), 1285–1298 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    A. Chandrasekar, R. Rakkiyappan, J.D. Cao, S. Lakshmanan, Synchronization of memristor-based recurrent neural networks with two delay components based on second-order reciprocally convex approach. Neural Netw. 57, 79–93 (2014)CrossRefzbMATHGoogle Scholar
  4. 4.
    W.H. Chen, Z. Wang, X. Lu, On sampled-data control for master-slave synchronization of chaotic Lur’e systems. IEEE Trans. Circ. Syst. II Exp. Briefs 59(8), 515–519 (2012)CrossRefGoogle Scholar
  5. 5.
    L.E. Ghaoui, F. Oustry, M. AitRami, A cone complementarity linearization algorithm for static output-feedback and related problems. IEEE Trans. Autom. Control 42(8), 1171–1176 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    K. Gu, V.L. Kharitonov, J. Chen, Stability of Time-Delay Systems (Birkhäuser, Boston, 2003)CrossRefzbMATHGoogle Scholar
  7. 7.
    H.M. Guo, S.M. Zhong, F.Y. Gao, Design of PD controller for master-slave synchronization of Lur’e systems with time-delay. Appl. Math. Comput. 212(1), 86–93 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Q.-L. Han, On designing time-varying delay feedback controllers for master-slave synchronization of Lur’e systems. IEEE Trans. Circ. Syst. I Regul. Pap 54(7), 1573–1583 (2007)CrossRefGoogle Scholar
  9. 9.
    X.F. Jiang, Q.-L. Han, S.R. Liu, A.K. Xue, A new \(\text{ H }_{\infty }\) stabilization criterion for networked control systems. IEEE Trans. Autom. Control 53(4), 1025–1032 (2008)MathSciNetCrossRefGoogle Scholar
  10. 10.
    J.G. Lu, D.J. Hill, Impulsive synchronization of chaotic Lur’e systems by linear static measurement feedback: an LMI approach. IEEE Trans. Circ. Syst. II Exp. Briefs 54(8), 710–714 (2007)CrossRefGoogle Scholar
  11. 11.
    J.G. Lu, D.J. Hill, Global asymptotical synchronization of chaotic Lur’e systems using sampled data: a linear matrix inequality approach. IEEE Trans. Circ. Syst. II Exp. Briefs 55(6), 586–590 (2008)CrossRefGoogle Scholar
  12. 12.
    J.Q. Lu, J.D. Cao, D.W.C. Ho, Adaptive stabilization and synchronization for chaotic Lur’e systems with time-varying delay. IEEE Trans. Circ. Syst. I Regul. Pap. 55(5), 1347–1356 (2008)MathSciNetCrossRefGoogle Scholar
  13. 13.
    D.Z. Ma, H.G. Zhang, Z.S. Wang, J. Feng, Fault tolerant synchronization of chaotic systems based on T-S fuzzy model with fuzzy sampled-data controller. Chin. Phys. B 19(5), 050506 (2010)CrossRefGoogle Scholar
  14. 14.
    T.D. Ma, H.G. Zhang, J. Fu, Exponential synchronization of stochastic impulsive perturbed chaotic Lur’e systems with time-varying delay and parametric uncertainty. Chin. Phys. B 17(2), 4407–4417 (2008)Google Scholar
  15. 15.
    R. Rakkiyappan, A. Chandrasekar, J.H. Park, O.M. Kwon, Exponential synchronization criteria for Markovian jumping neural networks with time-varying delays and sampled-data control. Nonlinear Anal. Hybrid 14, 16–37 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    R. Rakkiyappan, R. Sivasamy, S. Lakshmanan, Exponential synchronization of chaotic Lur’e systems with time-varying delay via sampled-data control. Chin. Phys. B 23(6), 060504 (2014)CrossRefGoogle Scholar
  17. 17.
    R. Rakkiyappan, R. Sivasamy, X. Li, Synchronization of identical and nonidentical memristor-based chaotic systems via active backstepping control technique. Circ. Syst. Signal Process. 34(3), 763–778 (2015)CrossRefGoogle Scholar
  18. 18.
    R. Sivasamy, R. Rakkiyappan, Improved stability criteria for neutral type Lur’e systems with time-varying delays. Appl. Math. Lett. 38, 168–173 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    S.J.S. Theesar, P. Balasubramaniam, Secure communication via synchronization of Lur’e systems using sampled-data controller. Circ. Syst. Signal Process. 33(1), 37–52 (2014)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Y.Q. Wu, H.Y. Su, Z.G. Wu, Asymptotical synchronization of chaotic Lur’e systems under time-varying sampling. Circ. Syst. Signal Process. 33(3), 699–712 (2014)CrossRefGoogle Scholar
  21. 21.
    Y.Q. Wu, H.Y. Su, Z.G. Wu, \(\text{ H }_\infty \) filtering for discrete fuzzy stochastic systems with randomly occurred sensor nonlinearities. Signal Process. 108, 288–296 (2015)CrossRefGoogle Scholar
  22. 22.
    Y.Q. Wu, H.Y. Su, Z.G. Wu, Synchronisation control of dynamical networks subject to variable sampling and actuators saturation. IET Control Theory Appl. 9(3), 381–391 (2015)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Y.Q. Wu, Z.G. Wu, H.Y. Su, Robust output synchronization of non-identical linear agents via internal model principle. IET Control Theory Appl. (2014). doi: 10.1049/iet-cta.2014.1192
  24. 24.
    Z.G. Wu, P. Shi, H.Y. Su, J. Chu, Sampled-data synchronization of chaotic Lur’e systems with time delays. IEEE Trans. Neural Netw. Learn. Syst. 24(3), 410–421 (2013)CrossRefGoogle Scholar
  25. 25.
    X.Q. Xiao, L. Zhou, Z.J. Zhang, Synchronization of chaotic Lur’e systems with quantized sampled-data controller. Commun. Nonlinear Sci. Numer. Simul. 19(6), 2039–2047 (2014)MathSciNetCrossRefGoogle Scholar
  26. 26.
    D. Yang, Robust networked \(\text{ H }_{\infty }\) synchronization of nonidentical chaotic Lur’e systems. Chin. Phys. B 23(1), 010504 (2014)CrossRefGoogle Scholar
  27. 27.
    D. Yang, K.-Y. Cai, Decentralized networked stabilization for interconnected nonlinear systems: a fuzzy control approach. In: Proceedings of the 8th world congress on intelligent control and automation (WCICA), 4823–4828, Jinan, China, (2010)Google Scholar
  28. 28.
    C. Yin, S.M. Zhong, W.F. Chen, Design PD controller for master-slave synchronization of chaotic Lur’e systems with sector and slope restricted nonlinearities. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1632–1639 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    C.K. Zhang, Y. He, M. Wu, Improved global asymptotical synchronization of chaotic Lur’e systems with sampled-data control. IEEE Trans. Circ. Syst. II Exp. Briefs 56(4), 320–324 (2009)CrossRefGoogle Scholar
  30. 30.
    C.K. Zhang, L. Jiang, Y. He et al., Asymptotical synchronization for chaotic Lur’e systems using sampled-data control. Commun. Nonlinear Sci. Numer. Simul. 18(10), 2743–2751 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.School of Control Science and EngineeringHebei University of TechnologyTianjinChina

Personalised recommendations