Advertisement

Circuits, Systems, and Signal Processing

, Volume 35, Issue 5, pp 1507–1529 | Cite as

1-V Inverting and Non-inverting Loser-Take-All Circuit and Its Applications

  • Fabian KhatebEmail author
  • Montree Kumngern
  • Tomasz Kulej
Article

Abstract

A new solution for a non-conventional loser-take-all (LTA) circuit is proposed in the paper. The circuit possesses several inverting and non-inverting input terminals and an additional current output, which increases its versatility and allows simplifying its possible applications. In order to show its usefulness and versatility, several new applications of the proposed LTA have also been developed, including a simple digital-to-analog converter, an n-bit programmable adder/summer, a chopper modulator and a precision rectifier. The LTA has been designed and fabricated with a 0.35 \(\upmu \hbox {m}\) CMOS I3T25 AMIS process, exploiting the recently proposed bulk-driven quasi-floating-gate technique. The LTA circuit operates from 1 V supply and dissipates 74 \(\upmu \hbox {W}\) of power. The simulations performed in Cadence environment and the measurements of a real chip confirm the attractive features of the proposed LTA.

Keywords

Winner-take-all Loser-take-all Bulk-driven MOS  Quasi-floating-gate MOS 

Notes

Acknowledgments

Research described in this paper was financed by the National Sustainability Program under Grant LO1401 and by the Czech Science Foundation under Grant No. P102-15-21942S. For the research, infrastructure of the SIX Center was used.

References

  1. 1.
    I. Baturone, J.L. Huertas, A. Barriga, S. Sanchez-Solano, Current-mode multiple-input max circuit. Electron. Lett. 30, 678–680 (1994)CrossRefGoogle Scholar
  2. 2.
    I. Baturone, S. Sanchez-Solano, A. Barriga, J.L. Huertas, Implementation of CMOS fuzzy controllers as mixed-signal integrated circuits. IEEE Trans. Fuzzy Syst. 5, 1–19 (1997)CrossRefGoogle Scholar
  3. 3.
    R. Carvajal, J. Ramirez-Angulo, J. Martinez-Heredia, High-speed high-precision min/max circuits in CMOS technology. Electron. Lett. 36, 697–699 (2000)CrossRefGoogle Scholar
  4. 4.
    H. Chaoui, CMOS analogue adder. Electron. Lett. 31, 180–181 (1995)CrossRefGoogle Scholar
  5. 5.
    R. Fried, C.C. Enz, Simple and accurate voltage adder/subtractor. Electron. Lett. 33, 944–945 (1997)CrossRefGoogle Scholar
  6. 6.
    C.Y. Huang, B.D. Liu, Current-mode multiple input maximum circuit for fuzzy logic controllers. Electron. Lett. 30, 1924–1925 (1994)CrossRefGoogle Scholar
  7. 7.
    F. Khateb, J. Vávra, D. Biolek, A novel current-mode full-wave rectifier based on one CDTA and two diodes. Radioengineering 19, 437–445 (2010)Google Scholar
  8. 8.
    F. Khateb, S. Bay Abo Dabbous, S. Vlassis, A survey of non-conventional techniques for low-voltage, low-power analog circuits design. Radioengineering 22, 415–427 (2013)Google Scholar
  9. 9.
    F. Khateb, Bulk-driven floating-gate and bulk-driven quasi-floating-gate techniques for low-voltage, low-power analog circuits design. Int. J. Electron. Commun. (AEU) 68, 64–72 (2014)CrossRefGoogle Scholar
  10. 10.
    F. Khateb, M. Kumngern, S. Vlassis, C. Psychalinos, T. Kulej, Sub-volt fully balanced differential difference amplifier. Circuits Syst. Comput. J. 24, 1550005-1–1550005-18 (2015)CrossRefGoogle Scholar
  11. 11.
    F. Khateb, S. Vlassis, M. Kumngern, C. Psychalinos, T. Kulej, R. Vrba, L. Fujcik, 1 V Rectifier based on bulk-driven quasi-floating-gate differential difference amplifiers. Circuits Syst. Signal Process. 34, 2077–2089 (2015)CrossRefGoogle Scholar
  12. 12.
    F. Khateb, The experimental results of the bulk-driven quasi-floating-gate MOS transistor. Int. J. Electron. Commun. (AEU) 69, 462–466 (2015)CrossRefGoogle Scholar
  13. 13.
    F. Khateb, S. Vlassis, Low-voltage bulk-driven rectifier for biomedical applications. Microelectron. J. 44, 642–648 (2013)CrossRefGoogle Scholar
  14. 14.
    P.R. Kinget, Device mismatch and tradeoffs in the design of analog circuits. IEEE J. Solid State Circuits 40, 1212–1224 (2005)CrossRefGoogle Scholar
  15. 15.
    T. Kulej, G. Blakiewicz, A 0.5 V bulk-driven voltage follower/DC level shifter and its application in class AB output stage. Int. J. Circuit Theory Appl. (2014). doi: 10.1002/cta.2029
  16. 16.
    T. Kulej, 0.5-V bulk-driven CMOS operational amplifier. IET Circuits Devices Syst. 7, 352–360 (2013)CrossRefGoogle Scholar
  17. 17.
    T. Kulej, 0.4-V bulk-driven operational amplifier with improved input stage. Circuits Syst. Signal Process. 34, 1167–1185 (2015)MathSciNetCrossRefGoogle Scholar
  18. 18.
    T. Kulej, 0.5-V bulk-driven OTA and its applications. Int. J. Circuit Theory Appl. 43, 187–204 (2015)CrossRefGoogle Scholar
  19. 19.
    T. Kulej, F. Khateb, Bulk-driven adaptively biased OTA in 0.18 \(\upmu \)m CMOS. Electron. Lett. 51, 458–460 (2015)CrossRefGoogle Scholar
  20. 20.
    T. Kulej, F. Khateb, 0.4-V bulk-driven differential–difference amplifier. Microelectron. J. 46, 362–369 (2015)CrossRefGoogle Scholar
  21. 21.
    M. Kumngern, New chopper modulators using differential voltage current conveyor. Radioengineering 20, 423–427 (2011)Google Scholar
  22. 22.
    J. Lazzaro, S. Lyckenbush, M.A. Malhowad, C. Mead, Winner take-all of o(n) complexity, in Advances in Neural Signal Processing Systems, ed. by D.S. Touretzky (Morgan Kaufmann, Los Altos, 1989)Google Scholar
  23. 23.
    A. Monpapassorn, Chopper modulators using current conveyor analogue switches. Analog Integr. Circuits Signal Process. 45, 155–162 (2005)CrossRefGoogle Scholar
  24. 24.
    A. Monpapassorn, Programmable wide range voltage adder/subtractor and its application as an encoder. IEE Proc. Circuits Devices Syst. 152, 697–702 (2005)CrossRefGoogle Scholar
  25. 25.
    I. Opris, Rail-to-rail multiple-input min/max circuit. IEEE Trans. Circuits Syst. II Analog Digit. Signal Process. 45, 137–140 (1998)CrossRefGoogle Scholar
  26. 26.
    V.A. Pedroni, B.U. Pedroni, Output stage based high-resolution min/max and rank-order filters. IEEE Trans. CAS-II 52, 28–32 (2005)Google Scholar
  27. 27.
    M. Pelgrom, A. Duinmaijer, A. Welbers, Matching properties of MOS transistors. IEEE J. Solid State Circuits 24, 1433–1440 (1989)CrossRefGoogle Scholar
  28. 28.
    P. Promme, K. Chattrakun, CMOS WTA maximum and minimum circuits with their applications to analog switch and rectifiers. Microelectron. J. 42, 52–62 (2011)CrossRefGoogle Scholar
  29. 29.
    G. Raikos, S. Vlassis, C. Psychalinos, 0.5 V bulk-driven analog building blocks. AEÜ Int. J. Electron. Commun. 66, 920–927 (2012)CrossRefGoogle Scholar
  30. 30.
    G. Raikos, S. Vlassis, 0.8 V bulk-driven operational amplifier. Analog Integr. Circuits Signal Process. 63, 425–432 (2010)CrossRefGoogle Scholar
  31. 31.
    N. Raj, A.K. Singh, A.K. Gupta, Low-voltage bulk-driven self-biased cascode current mirror with bandwidth enhancement. Electron. Lett. 50, 23–25 (2014)CrossRefGoogle Scholar
  32. 32.
    F. Rezvan, E. Farshidi, A FG-MOS based fully differential current controlled conveyor and its applications. Circuits Syst. Signal Process. 32, 993–1011 (2013)CrossRefGoogle Scholar
  33. 33.
    S. Vlassis, F. Khateb, Automatic tuning circuit for bulk-controlled sub-threshold MOS resistor. Electron. Lett. 50, 432–434 (2014)CrossRefGoogle Scholar
  34. 34.
    K. Wawryn, B. Strzeszewski, Current mode circuits for programmable WTA neural network. Analog Integr. Circuits Signal Process. 27, 49–69 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Fabian Khateb
    • 1
    • 2
    Email author
  • Montree Kumngern
    • 3
  • Tomasz Kulej
    • 4
  1. 1.Department of MicroelectronicsBrno University of TechnologyBrnoCzech Republic
  2. 2.Faculty of Biomedical EngineeringCzech Technical University in PragueKladnoCzech Republic
  3. 3.Faculty of EngineeringKing Mongkut’s Institute of Technology LadkrabangBangkokThailand
  4. 4.Department of Electrical EngineeringTechnical University of CzęstochowaCzestochowaPoland

Personalised recommendations