Circuits, Systems, and Signal Processing

, Volume 35, Issue 5, pp 1563–1577 | Cite as

Quantized Observer-Based Sliding Mode Control for Networked Control Systems Via the Time-Delay Approach

  • Renquan LuEmail author
  • Peijie Yang
  • Jianjun Bai
  • Anke Xue


This paper investigates the sliding mode control problem for networked control systems, which are influenced by the non-ideal network environment, such as network-induced delays, packet dropouts and quantization errors. The states of the system are assumed to be unavailable, and an observer is designed to estimate the state of the system, based on which a sliding mode controller is given to guarantee the closed-loop system to be stable. Furthermore, it is shown that the proposed control scheme ensures the reachability of the sliding surfaces in both the state estimate space and the estimation error space. Finally, a numerical example is given to illustrated the effectiveness of the proposed methodology.


NCSs Sliding mode controller Signal quantization  Data dropout 



This work was supported in part by the China National Funds for Distinguished Young Scientists under Grant (61425009), in part by the National Natural Science Foundation of China under Grants (61305135, 61427808, 61333009, 61320106009, 61320106010, 61374083), and in part by National Key Basic Research Program of People’s Republic of China under Grants 2012CB821204.


  1. 1.
    H. Bo, G. Wang, General observer-based controller design for singular Markovian jump systems. Int. J. Innov. Comput. Inf. Control 10(5), 1897–1913 (2014)Google Scholar
  2. 2.
    Y. Cao, Y. Sun, J. Lam, Delay dependent robust \(H_\infty \) control for uncertain systems with time varying delays. IEEE Proc. Control Theory Appl. 143(3), 338–344 (1998)CrossRefGoogle Scholar
  3. 3.
    F. Chen, R. Hou, B. Jiang, G. Tao, Study on fast terminal sliding mode control for a helicopter via quantum information technique and nonlinear fault observer. Int. J. Innov. Comput. Inf. Control 9(8), 3437–3447 (2013)Google Scholar
  4. 4.
    M. Fu, L. Xie, The sector bound approach to quantized feedback control. IEEE Trans. Autom. Control 50(11), 1698–1711 (2005)MathSciNetCrossRefGoogle Scholar
  5. 5.
    H. Gao, T. Chen, J. Lam, A new delay system approach to network-based control. Automatica 44(1), 39–52 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    H. Gao, X. Meng, T. Chen, Stabilization of networked control systems with a new delay characterization. IEEE Trans. Autom. Control 53(9), 2142 (2008)MathSciNetCrossRefGoogle Scholar
  7. 7.
    H. Gao, T. Chen, \(H_\infty \) estimation for uncertain systems with limited communication capacity. IEEE Trans. Autom. Control 52(11), 2070–2084 (2007)MathSciNetCrossRefGoogle Scholar
  8. 8.
    H. Gao, Y. Zhao, J. Lam, K. Chen, Fuzzy filtering of nonlinear systems with intermittent measurements. IEEE Trans. Fuzzy Syst. 17(2), 291–300 (2009)CrossRefGoogle Scholar
  9. 9.
    H. Gao, X. Meng, T. Chen, J. Lam, Stabilization of networked control systems via dynamic output-feedback controllers. SIAM J. Control Optim. 48(5), 3643–3658 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    H. Gao, T. Chen, A new approach to quantized feedback control systems. Automatica 44(2), 534–542 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    W.J. Kim, K. Ji, A. Ambike, Networked real-time control strategies dealing with stochastic time delays and packet losses. Proc. Am. Control Conf. 1, 621–626 (2005)Google Scholar
  12. 12.
    H. Li, C. Wu, P. Shi, Y. Gao, Control of nonlinear networked systems with packet dropouts: interval type-2 fuzzy model-based approach. IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2371814
  13. 13.
    H. Li, C. Wu, L. Wu, H.K. Lam, Y. Gao, Filtering of interval type-2 fuzzy systems with intermittent measurements. IEEE Trans. Cybern. doi: 10.1109/TCYB.2015.2413134
  14. 14.
    F. Li, P. Shi, L. Wu, M. Basin, C. Lim, Quantized control design for cognitive radio networks modeled as nonlinear semi-Markovian jump systems. IEEE Trans. Ind. Electron. 62(4), 2330–2340 (2015)CrossRefGoogle Scholar
  15. 15.
    P. Liu, State feedback stabilization of time-varying delay uncertain systems: a delay decomposition approach. Linear Algebra Appl. 438(5), 2188–2209 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    R. Lu, Y. Xu, A. Xue, \(H_\infty \) filtering for singular systems with communication delays. Signal Process 90, 1240–1248 (2010)CrossRefzbMATHGoogle Scholar
  17. 17.
    F. Li, P. Shi, L. Wu, X. Zhang, Fuzzy-model-based D-stability and non-fragile control for discrete-time descriptor systems with multiple delays. IEEE Trans. Fuzzy Syst. 22(4), 1019–1025 (2014)CrossRefGoogle Scholar
  18. 18.
    H. Li, J. Yu, C. Hilton, H. Liu, Adaptive sliding-mode control for nonlinear active suspension vehicle systems using TCS fuzzy approach. IEEE Trans. Ind. Electron. 60(8), 3328–3338 (2013)CrossRefGoogle Scholar
  19. 19.
    H. Li, H. Gao, P. Shi, X. Zhao, Fault-tolerant control of Markovian jump stochastic systems via the augmented sliding mode observer approach. Automatica 50(7), 1825–1834 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    F. Li, L. Wu, P. Shi, C.C. Lim, State estimation and sliding-mode control for semi-Markovian jump systems with mismatched uncertainties. Automatica 51, 385–393 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    H. Li, Z. Sun, H. Liu, M.Y. Chow, Predictive observer-based control for networked control systems with network-induced delay and packet dropout. Asian J. Control 10, 638–650 (2008)MathSciNetCrossRefGoogle Scholar
  22. 22.
    J. Lian, F. Zhang, P. Shi, Sliding mode control of uncertain stochastic hybrid delay systems with average dwell time. Circuits Syst. Signal Process 31(2), 539–553 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    M. Liu, X. Cao, S. Zhang, W. Yang, Sliding mode control of quantized systems against bounded disturbances. Inf. Sci. 274, 261–272 (2014)MathSciNetCrossRefGoogle Scholar
  24. 24.
    M. Liu, J. You, Observer-based controller design for networked control systems with sensor quantisation and random communication delay. Int. J. Intell. Syst. 43(10), 1901–1912 (2012)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Y. Niu, J. Lam, X. Wang, D.W.C. Ho, Observer-based sliding mode control for nonlinear state-delayed systems. Int. J. Intell. Syst. 35(2), 139–150 (2004)MathSciNetzbMATHGoogle Scholar
  26. 26.
    A. Seuret, F. Gouaisbaut, Wirtinger-based integral inequality: application to time-delay systems. Automatica 49(9), 2860–2866 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    X. Su, P. Shi, L. Wu, M.V. Basin, Reliable filtering with strict dissipativity for T-S fuzzy time-delay systems. IEEE Trans. Cybern. 44(12), 2470–2483 (2014)CrossRefGoogle Scholar
  28. 28.
    X. Su, L. Wu, P. Shi, Y. Song, A novel approach to output feedback control of fuzzy stochastic systems. Automatica 50(12), 3268–3275 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    P. Shi, X. Luan, F. Liu, \(H_\infty \) filtering for discrete-time systems with stochastic incomplete measurement and mixed delays. IEEE Trans. Ind. Electron. 59(6), 2732–2739 (2012)CrossRefGoogle Scholar
  30. 30.
    E. Tian, D. Yue, X. Zhao, Quantised control design for networked control systems. IET Control Theory Appl. 1(6), 1693–1699 (2007)CrossRefGoogle Scholar
  31. 31.
    V. Vesely, D. Rosinova, T.N. Quang, Networked output feedback robust predictive controller design. Int. J. Innov. Comput. Inf. Control 9(10), 3941–3953 (2013)Google Scholar
  32. 32.
    T. Wang, H. Gao, J. Qiu, A combined adaptive neural network and nonlinear model predictive control for multirate networked industrial process control. IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2411671
  33. 33.
    H. Wang, P. Shi, C.C. Lim, Q. Xue, Event-triggered control for networked Markovian jump systems. Int. J. Robust Nonlinear Control. doi: 10.1002/rnc.3273
  34. 34.
    Z. Wang, D.W.C. Ho, Y. Liu, Robust \(H_\infty \) control for a class of nonlinear discrete time-delay stochastic systems with missing measurements. Automatica 45(3), 684–691 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    L. Wu, X. Su, P. Shi, Sliding mode control with bounded \({L}_2\) gain performance of Markovian jump singular time-delay systems. Automatica 48(8), 1929–1933 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    L. Wu, W. Zheng, Passivity-based sliding mode control of uncertain singular time-delay systems. Automatica 45(9), 2120–2127 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    L. Wu, W. Zheng, H. Gao, Dissipativity-based sliding mode control of switched stochastic systems. IEEE Trans. Autom. Control 58(3), 785–791 (2013)MathSciNetCrossRefGoogle Scholar
  38. 38.
    L. Wu, P. Shi, H. Gao, State estimation and sliding-mode control of Markovian jump singular systems. IEEE Trans. Autom. Control 55(5), 1213–1219 (2010)MathSciNetCrossRefGoogle Scholar
  39. 39.
    M. Wu, Y. He, J. She, G. Liu, Delay-dependent criteria for robust stability of time-varying delay system. Automatica 40, 1435–1439 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Y. Xu, H. Su, Y. Pan, Z. Wu, W. Xu, Stability analysis of networked control systems with Round-Robin scheduling and packet dropouts. J. Franklin Inst. 350(8), 2013–2027 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Y. Xu, H. Su, Y. Pan, Output feedback stabilization for Markov-based nonuniformly sampled-data networked control systems. Syst. Control Lett. 62(8), 656–663 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Y. Xu, H. Su, Y. Pan, Z. Wu, Robust \(H_\infty \) filtering for networked stochastic systems with randomly occurring sensor nonlinearities and packet dropouts. Sig. Process. 93(7), 1794–1803 (2013)CrossRefGoogle Scholar
  43. 43.
    R. Yang, G. Liu, P. Shi, C. Thomas, M.V. Basin, Predictive output feedback control for networked control systems. IEEE Trans. Ind. Electron. 61(1), 512–520 (2014)CrossRefGoogle Scholar
  44. 44.
    D. Yue, Q.L. Han, J. Lam, Network-based robust \(H_\infty \) control with systems with uncertainty. Automatica 41, 999–1007 (2005)Google Scholar
  45. 45.
    R. Yang, P. Shi, G. Liu, Filtering for discrete-time networked nonlinear systems with mixed random delays and packet dropouts. IEEE Trans. Autom. Control 11(56), 2655–2660 (2011)MathSciNetCrossRefGoogle Scholar
  46. 46.
    J. Zhao, B. Jiang, P. Shi, Z. He, Fault tolerant control for damaged aircraft based on sliding mode control scheme. Int. J. Innov. Comput. Inf. Control 10(1), 293–302 (2014)Google Scholar
  47. 47.
    H. Zhang, J. Wang, Y. Shi, Robust sliding-mode control for Markovian jump systems subject to intermittent observations and partially known transition probabilities. Syst. Control Lett. 62(12), 1114–1124 (2013)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Renquan Lu
    • 1
    Email author
  • Peijie Yang
    • 1
  • Jianjun Bai
    • 1
  • Anke Xue
    • 1
  1. 1.Key Lab for IOT and Information Fusion Technology of Zhejiang, Institute of Information and ControlHangzhou Dianzi UniversityHangzhouPeople’s Republic of China

Personalised recommendations