Advertisement

Circuits, Systems, and Signal Processing

, Volume 35, Issue 5, pp 1457–1480 | Cite as

Fully Digitally Programmable Generalized Mixed Mode Universal Filter Configuration

  • Devesh Singh
  • Neelofer AfzalEmail author
Article

Abstract

This paper presents five feature-enriched hardware-efficient mixed mode universal filter (UF) biquads using digitally programmable (DP) current conveyors (CC). Common features of proposed UFs include use of only two grounded capacitors, operation in all the four modes, realization of all the filter functions, independently programmable filter parameters and cascadability (last three features, however, are partially present in last UF). Besides all these features, the first proposed UF, designated as Generalized DPUF provides additional features such as reconfigurability, use of minimum input terminals, no component matching constraint and lesser parasitic effects. Although Generalized DPUF encompasses almost all the desirable features of any filter, it uses eight CCs for obtaining these. The need of eight CCs is justified by introducing remaining four programmable/non-programmable UFs. These additional UFs are designated as Derived UFs as they are obtained by the deletion of CCs of the Generalized DPUF. Proportionate reduction in features of Derived UFs with number of CCs proves the reasonability of eight CCs in Generalized DPUF. To further strengthen this fact, all the proposed UFs are compared with reported filters. Better/comparable performance of Generalized and reduced-performance Derived filters again justifies the need of eight CCs in Generalized UF.

Keywords

Digitally programmable Reconfigurable Generalized Mixed mode Universal filter 

Notes

Acknowledgments

The authors would like to thank Department of Electronics and Communication Engineering, Jamia Millia Islamia University, for providing valuable support. Authors are also thankful to the anonymous reviewers for their valuable suggestions/guidance.

References

  1. 1.
    M.T. Abuelma’atti, A. Bentrcia, S.M. Al-Shahrani, A novel mixed-mode current-conveyor based filter. Int. J. Electron. 91(3), 191–197 (2004)CrossRefGoogle Scholar
  2. 2.
    M.T. Abuelma’atti, A. Bentrcia, A novel mixed-mode CCII-based filter. Act. Passive Electron. Compon. 27(4), 197–205 (2004)CrossRefGoogle Scholar
  3. 3.
    H.A. Alzaher, H.O. Elwan, M. Ismail, A CMOS highly linear channel-select filter for 3G multistandard integrated wireless receivers. IEEE J. Solid State Circuits 37(1), 27–37 (2002)CrossRefGoogle Scholar
  4. 4.
    H.A. Alzaher, A CMOS digitally programmable universal current mode filter. IEEE Trans. Circuits Syst. II 55(8), 758–762 (2008)CrossRefGoogle Scholar
  5. 5.
    H.A. Alzaher, N.A. Tasadduq, O. Al-Ees, Digitally programmable high-order current-mode universal filters. Analog Integr. Circuits Signal Process. 67(2), 179–187 (2011)CrossRefGoogle Scholar
  6. 6.
    H.A. Alzaher, N.A. Tasadduq, O. Al-Ees, Implementation of reconfigurable nth-order filter based on CCII. Analog Integr. Circuits Signal Process. 75(3), 539–545 (2013)CrossRefGoogle Scholar
  7. 7.
    H. Alzaher, N. Tasadduq, O. Al-Ees, F. Al-Ammari, A complementary metal-oxide semiconductor digitally programmable current conveyor. Int. J. Circuit Theory Appl. 41(1), 69–81 (2013)Google Scholar
  8. 8.
    P. Beg, S. Maheshwari, M.A. Siddiqi, Digitally controlled fully differential voltage and transadmittance-mode biquadratic filter. IET Circuits Devices Syst. 7(4), 193–203 (2013)CrossRefGoogle Scholar
  9. 9.
    M. Bhushan, R. Newcomb, Grounding of capacitor in integrated circuits. Electron. Lett. 3(4), 148–149 (1967)CrossRefGoogle Scholar
  10. 10.
    A.A. El-Adawy, A.M. Soliman, H.O. Elwan, Low voltage digitally controlled CMOS current conveyor. Int. J. Electron. Commun. 56(3), 137–144 (2002)CrossRefGoogle Scholar
  11. 11.
    G. Ferri, N.C. Guerrini, Low-voltage low-power CMOS current conveyors (Kluwer, Boston, 2003)Google Scholar
  12. 12.
    T.M. Hassan, S.A. Mahmoud, Fully programmable universal filter with independent gain-\(\omega _{0}\)-Q control based on new digitally programmable CMOS CCII. J. Circuits Syst. Comput. 18(5), 875–897 (2009)CrossRefGoogle Scholar
  13. 13.
    J.W. Horng, High-order current-mode and transimpedance-mode universal filters with multiple-inputs and two-outputs using MOCCIIs. Radioengineering 18(4), 537–543 (2009)MathSciNetGoogle Scholar
  14. 14.
    J. Jiang, Y. He, Tunable frequency versatile filters implementation using minimum number of passive elements. Analog Integr. Circuits Signal Process. 59(1), 53–64 (2009)CrossRefGoogle Scholar
  15. 15.
    C.A. Karybakas, C.A. Papazoglou, Low-sensitive CCII-based biquadratic filters offering electronic frequency shifting. IEEE Trans. Circuits Syst. II 46(5), 527–539 (1999)CrossRefGoogle Scholar
  16. 16.
    I.A. Khan, M.R. Khan, N. Afzal, Digitally programmable multifunctional current mode filter using CCIIs. J. Act. Passive Electron. Devices 1(3), 213–220 (2006)Google Scholar
  17. 17.
    S.A. Mahmoud, M.A. Hashiesh, A.M. Soliman, Low voltage digitally controlled fully differential current conveyor. IEEE Trans. Circuits Syst. I 52(10), 2055–2064 (2005)CrossRefGoogle Scholar
  18. 18.
    S. Minaeil, O.K. Sayin, H. Kuntman, Nth-order current transfer function synthesis using a high performance electronically tunable current conveyor. In IEEE Mediterranean Electrotechnical Conference (MELECON), 2006 May 16–19, Benalmádena (Malaga), Spain (2006)Google Scholar
  19. 19.
    N. Pandey, S.K. Paul, S.B. Jain, A. Bhattacharyya, Generalized mixed mode universal filter realization using current controlled Conveyors (online). HAIT J. Sci. Eng., (2007) http://people.clarkson.edu/~nanosci/jse/B/inpress/paul.pdf
  20. 20.
    N. Pandey, S.K. Paul, A. Bhattacharyya, S.B. Jain, A new mixed mode biquad using reduced number of active and passive elements. IEICE Electron. Express 3, 115–121 (2006)CrossRefGoogle Scholar
  21. 21.
    N. Pandey, S.K. Paul, Mixed mode universal filter. J. Circuits Syst. Comput. 22(1), 1250064-1–1250064-10 (2013)CrossRefGoogle Scholar
  22. 22.
    C.A. Papazoglou, C.A. Karybakas, Noninteracting electronically tunable CCII-based current mode biquadratic filters. IEE Proc. Circuits Devices Syst. 144(3), 178–184 (1997)CrossRefGoogle Scholar
  23. 23.
    S. Pavan, Y. Tsividis, Tuning in continuous-time filters, in high frequency continuous time filters in digital CMOS processes (Springer, Berlin, 2000), pp. 165–190Google Scholar
  24. 24.
    K.P. Pun, C.S. Choy, C.F. Chan, J.E. Da-Franca, Current division based digital frequency tuning for active RC filters. Analog Integr. Circuits Signal Process. 45(1), 61–69 (2005)CrossRefGoogle Scholar
  25. 25.
    A. Sedra, K.C. Smith, A second generation current conveyor and its applications. IEEE Trans. Circuit Theory 17(1), 132–134 (1970)CrossRefGoogle Scholar
  26. 26.
    D. Singh, N. Afzal, Digitally programmable current conveyor based mixed mode universal filter. Int. J. Electron. Lett. (2014). doi: 10.1080/21681724.2014.917714
  27. 27.
    D. Singh, N. Afzal, Digitally programmable high-Q voltage mode universal filter. Radioengineering 22(4), 995–1006 (2013)Google Scholar
  28. 28.
    A.M. Soliman, Mixed mode biquad circuits. Microelectron. J. 27(6), 591–594 (1996)CrossRefGoogle Scholar
  29. 29.
    A.M. Soliman, A.S. Eman, Digitally programmable second generation current conveyor based FPAA. Int. J. Circuit Theory Appl. 41(10), 1074–1084 (2013)CrossRefGoogle Scholar
  30. 30.
    G. Zatorre, S. Celma, C. Aldea, N. Medrano, E. Peralias, Digital auto-tuning system for analog filters. In Proceedings of the 6th International Caribbean Conference on Devices, Circuits and Systems, pp. 37 – 41, April 26–28, Playa del Carmen (2006)Google Scholar
  31. 31.
    L. Zhijun, Mixed-mode universal filter using MCCCII. Int. J. Electron. Commun. 63(12), 1072–1075 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Electronics and Communication EngineeringJamia Millia Islamia UniversityNew DelhiIndia

Personalised recommendations