Skip to main content
Log in

A Family of Memristive-Transfer Functions of Negative-Feedback Nullor-Based Amplifiers

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Memristors, memristive systems and mem-elements have been introduced in recent years as key devices for featuring novel possibilities for signal processing both digital and analog. The variable resistance of the memristor has been used as a powerful feature for the realization of new circuits. In this paper, the memristor is applied to the design of nullor-based negative-feedback amplifiers. The principal result of this application consists in the generation of a new family of memristive-transfer functions for all types of amplifiers: voltage, transconductance, transresistance and current. This novel idea represents the new version of the conventional negative-feedback amplifiers and introduces the use of the memristor as feedback element. A behavioral model based on the \(q\)\(\varphi \) relationship of the memristor is introduced which results helpful for simulating the new amplifiers. The nullor-based negative-feedback amplifiers with memristor are inspected by cases of study. In addition, the trans-mem conductance amplifier is widely studied with one nullor implementation, namely MOS. The implementation yields hybrid (MOS/memristor) circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. H. Abdalla, M.D. Pickett, in Spice Modeling of Memristors. IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1832–1835 (2011)

  2. S.P. Adhikari, M.P. Sah, H. Kim, L.O. Chua, Three fingerprints of memristor. IEEE Trans. Circuits Syst. I Regul. Pap. 60(11), 3008–3021 (2013)

    Article  MathSciNet  Google Scholar 

  3. A. Ascoli, F. Corinto, V. Senger, R. Tetzlaff, Memristor model comparison. IEEE Circuits Syst. Mag. 13(2), 89–105 (2013)

    Article  Google Scholar 

  4. D. Batas, H. Fiedler, A memristor spice implementation and a new approach for magnetic flux-controlled memristor modeling. IEEE Trans. Nanotechnol. 10(2), 250–255 (2011)

    Article  Google Scholar 

  5. R. Berdan, C. Lim, A. Khiat, C. Papavassiliou, T. Prodromakis, A memristor spice model accounting for volatile characteristics of practical reRAM. IEEE Electron. Device Lett. 35(1), 135–137 (2014)

    Article  Google Scholar 

  6. Z. Biolek, D. Biolek, V. Biolkova, Spice model of memristor with nonlinear dopant drift. Radioengineering 18, 210–214 (2004)

    Google Scholar 

  7. J. Borghetti, G.S. Snider, P.J. Kuekes, J.J. Yang, D.R. Stewart, R.S. Williams, ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464, 873–876 (2010)

    Article  Google Scholar 

  8. L.O. Chua, Memristor-the missing circuit element. IEEE Trans. Circuit Theory 18(5), 507–519 (1971)

    Article  Google Scholar 

  9. L.O. Chua, SMo Kang, Memristive devices and systems. IEEE Proc. 64(2), 209–223 (1976)

    Article  MathSciNet  Google Scholar 

  10. L.O. Chua, Resistance switching memories are memristors. Appl. Phys. A Mater. Sci. Process. 102, 765–783 (2011)

    Article  Google Scholar 

  11. S.H. Jo, K.-H. Kim, W. Lu, High-density crossbar arrays based on a Si memristive system. Nano Lett. 9, 870–874 (2009)

    Article  Google Scholar 

  12. S.H. Jo, T. Chang, I. Ebong, B.B. Bhadviya, P. Mazumder, W. Lu, Nanoscale memristor device as synapse in neuromorphic systems. Nano Lett. 10, 1297–1301 (2010)

    Article  Google Scholar 

  13. M. Liu, H. Yu, W. Wang, in FPAA Based on Integration of CMOS and Nanojunction Devices for Neuromorphic Applications. Nano-Net, vol. 3 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Springer, Berlin, 2009), pp. 44–48

  14. M. Mahvash, A.C. Parker, in A Memristor Spice Model for Designing Memristor Circuits. 53rd IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 989–992 (2010)

  15. F. Maloberti, in Analog Design for CMOS VLSI Systems. The Kluwer International Series in Engineering and Computer Science. VLSI, Computer Architecture and Digital Signal Processing (Springer, Berlin, 2001)

  16. B. Mouttet, in Proposal for Memristors in Signal Processing. Nano-Net, vol. 3 of Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering (Springer, Berlin, 2009), pp. 11–13

  17. E.H. Nordholt, in Design of High-Performance Negative-Feedback Amplifiers. Studies in Electrical and Electronic Engineering (Elsevier, Amsterdam, 1983)

  18. G. Palumbo, S. Pennisi, Feedback Amplifiers: Theory and Design (Springer, Berlin, 2002)

    Google Scholar 

  19. Y.V. Pershin, M. Di Ventra. SPICE Model of Memristive Devices with Threshold. arXiv e-prints (2012)

  20. Y.V. Pershin, S. La Fontaine, Massimiliano Di Ventra, Memristive model of amoeba learning. Phys. Rev. E 80(2), 021926 (2009). doi:10.1103/PhysRevE.80.021926

  21. Y.V. Pershin, M. Di Ventra, Practical approach to programmable analog circuits with memristors. IEEE Trans. Circuits Syst. I Regul. Pap. 57(8), 1857–1864 (2010)

    Article  MathSciNet  Google Scholar 

  22. A. Rak, G. Cserey, Macromodeling of the memristor in spice. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 29(4), 632–636 (2010)

    Article  Google Scholar 

  23. S. Shin, K. Kim, S.-M.S. Kang, Memristor applications for programmable analog ICs. IEEE Trans. Nanotechnol. 10(2), 266–274 (2011)

    Article  Google Scholar 

  24. S. Shin, L. Zheng, G. Weickhardt, S. Cho, S.-M. Kang, Compact circuit model and hardware emulation for floating memristor devices. IEEE Circuits Syst. Mag 13(2), 42–55 (2013)

    Article  Google Scholar 

  25. G.S. Snider, Self-organized computation with unreliable, memristive nanodevices. Nanotechnology 18(36), 365202 (2007). doi:10.1088/0957-4484/18/36/365202

  26. C.K. Tse (ed.), Memristors: theory and applications (special issue). IEEE Circuits Syst. Mag. 13(2) (2013). doi:10.1109/MCAS.2013.2256252

  27. J. Stoffels, Automation in High-Performance Negative Feedback Amplifier Design (Technische Universiteit Delft, Delft, 1988)

    Google Scholar 

  28. B.D. Strukov, G.S. Snider, D.R. Stewart, R.S. Williams, The missing memristor found. Nature 453(7191), 80–83 (2008)

    Article  Google Scholar 

  29. C.J.M. Verhoeven, G.L.E. Monna, Structured Electronic Design: Negative-Feedback Amplifiers (Springer, Berlin, 2003)

    Book  Google Scholar 

  30. R. Waser, M. Aono, Nanoionics-based resistive switching memories. Nat. Mater. 6, 833–840 (2007)

    Article  Google Scholar 

  31. R. Williams, How we found the missing memristor. IEEE Spectr. 45(12), 28–35 (2008)

    Article  Google Scholar 

  32. J.J. Yang, M.D. Pickett, X. Li, D.A.A. Ohlberg, R.S. Williams, D.R. Stewart, Memristive switching mechanism for metal/oxide/metal nanodevices. Nature 3(7), 429–433 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos Hernández-Mejía.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hernández-Mejía, C., Sarmiento-Reyes, A. & Vázquez-Leal, H. A Family of Memristive-Transfer Functions of Negative-Feedback Nullor-Based Amplifiers. Circuits Syst Signal Process 34, 3431–3447 (2015). https://doi.org/10.1007/s00034-015-0013-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-015-0013-9

Keywords

Navigation