Skip to main content
Log in

Adaptive Clutter Nulling Approach for Heterogeneous Environments

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript


Radar processors may suffer from performance loss when the heavy clutter is not sufficiently suppressed in a heterogeneous environment. In order to achieve the clutter suppression and further improve the detection performance, the clutter nulling method is widely addressed in radar systems, especially for the low-rank clutter in space–time adaptive processing, where the rank of the clutter covariance matrix is smaller than the length of test data vector. For the ubiquitous clutter-plus-noise environment in practice, where it is assumed as the superposition of the white Gaussian noise and the low-rank compound-Gaussian clutter without the accurately prior information of the texture, this paper develops a clutter nulling approach, whose kernel and emphasis are to obtain the maximum-likelihood estimation of the orthonormal basis vectors of the clutter subspace. Precisely in processing, the proposed clutter nulling method is mainly derived with the application of the Lagrange multiplier method and adaptively implemented using iteration method with the training data. Finally, the results on numerical data validate the advantages of the proposed nulling approach, in comparison with the existing method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others


  1. V. Anastassopoulous, G.A. Lampropoulos, A. Drosopoulos, M. Rey, High resolution radar clutter statistics. IEEE Trans. Aerosp. Electron. Syst. 35(1), 43–60 (1999)

    Article  Google Scholar 

  2. N. Bon, A. Khenchaf, R. Garello, GLRT subspace detection for range and Doppler distributed targets. IEEE Trans. Aerosp. Electron. Syst. 44(2), 678–696 (2008)

    Article  Google Scholar 

  3. M. Bouvet, G. Bienvenu, High Resolution Methods in Underwater Acoustics (Springer, New York, 1991)

    Book  MATH  Google Scholar 

  4. L. E. Brennan, F. M. Staudaher, Subclutter visibility demonstration. Adaptive Sensors, Tech. Rep., RL-TR-92-21 (1992)

  5. J. Carretero-Moya, J. Gismero-Menoyo, A. Asensio-L\(\acute{o}\)pez, A. Asensio-L\(\acute{o}\)pez, \(\acute{A}\) Blanco-del-Campo, Small-target detection in high-resolution heterogeneous sea-clutter: an empirical analysis. IEEE Trans. Aerosp. Electron. Syst. 47(3), 1880–1898 (2011)

  6. J. Carretero-Moya, J. Gismero-Menoyo, \(\acute{A}\) Blanco-del-Campo, A. Asensio-L\(\acute{o}\)pez, Statistical analysis of a high-Resolution sea-clutter database. IEEE Trans. Geosci. Remote Sens. 48(4), 2024–2037 (2010)

  7. G.L. Cui, L.J. Kong, X.B. Yang, Performance analysis of colocated MIMO radars with randomly distributed arrays in compound-Gaussian clutter. Circuits Syst. Signal Process. 31(4), 1407–1422 (2012)

    Article  MathSciNet  Google Scholar 

  8. R.J. Fogler, L.D. Hostetler, D.R. Hush, SAR clutter suppression using probability density skewness. IEEE Trans. Aerosp. Electron. Syst. 30(2), 621–625 (1994)

    Article  Google Scholar 

  9. C.H. Gierull, Ground moving target parameter estimation for two-channel SAR. IEE Proc.-Radar Sonar Navig. 153(3), 224–233 (2006)

    Article  Google Scholar 

  10. F. Gini, A. Farina, M. Greco, Selected list of references on radar signal processing. IEEE Trans. Aerosp. Electron. Syst. 37(1), 329–359 (2001)

    Article  Google Scholar 

  11. F. Gini, A. Farina, M. Montanari, Vector subspace detection in compound-Gaussian clutter part II: performance analysis. IEEE Trans. Aerosp. Electron. Syst. 38(4), 1312–1323 (2002)

    Article  Google Scholar 

  12. G. Ginolhac, P. Forster, F. Pascal, J. Ovarlez, Derivation of the bias of the normalized sample covariance matrix in a heterogeneous noise with application to low rank STAP filter. IEEE Trans. Signal Process. 60(1), 514–518 (2012)

    Article  MathSciNet  Google Scholar 

  13. M.V. Greco, F. Gini, M. Rangaswamy, Statistical analysis of measured polarimetric clutter data at different range resolutions. Proc. Inst. Elect. Eng. Radar Sonar Navig. 153(6), 473–481 (2006)

    Article  Google Scholar 

  14. A. Haimovich, Asymptotic distribution of the conditional signal-to-noise ratio in an eigenanalysis-based adaptive array. IEEE Trans. Aerosp. Electron. Syst. 33(3), 988–997 (1997)

    Article  Google Scholar 

  15. C. Hao, J. Yang, X. Ma, C. Hou, D. Orlando, Adaptive detection of distributed targets with orthogonal rejection. IET Radar Sonar Navig. 6(6), 483–493 (2012)

    Article  Google Scholar 

  16. S. Kraut, L.L. Scharf, L. McWhorter, Adaptive subspace detectors. IEEE Trans. Signal Process. 49(1), 1–16 (2001)

    Article  Google Scholar 

  17. Y. Liang, S. Pei-lin, Y. Lei, H. Ning, T. Jun, Modeling of compound-Gaussian sea clutter based on an inverse Gaussian distribution. J. Radars. 2(4), 461–465 (2013)

    Google Scholar 

  18. E. Ollila, D.E. Tyler, V. Koivunen, H.V. Poor, Compound-Gaussian clutter modeling with an inverse Gaussian texture distribution. IEEE Signal Process. Lett. 19(12), 876–879 (2012)

    Article  Google Scholar 

  19. S. Panagopoulos, J.J. Soraghan, Small-target detection in sea clutter. IEEE Trans. Geosci. Remote Sens. 42(7), 1355–1361 (2004)

    Article  Google Scholar 

  20. R.S. Raghavan, Statistical interpretation of a data adaptive clutter subspace estimation algorithm. IEEE Trans. Aerosp. Electron. Syst. 48(2), 1370–1384 (2012)

    Article  MathSciNet  Google Scholar 

  21. M. Rangaswamy, F.C. Lin, K.R. Gerlach, Robust adaptive signal processing methods for heterogeneous radar clutter scenarios. Signal Process. 84, 1653–1665 (2004)

    Article  MATH  Google Scholar 

  22. J. Saebboe, D.T. Gjessing, Nonlinear and linear combination of multi-frequency signals for radar target classification; verification of basic relations. IEE Proc.-Radar Sonar Navig. 153(4), 352–360 (2006)

    Article  Google Scholar 

  23. K.J. Sangston, F. Gini, M.S. Greco, Coherent radar target detection in heavy-tailed compound-Gaussian clutter. IEEE Trans. Aerosp. Electron. Syst. 48(1), 64–77 (2012)

    Article  Google Scholar 

  24. M. Souden, J. Benesty, S. Affes, A Study of the LCMV and MVDR noise reduction filters. IEEE Trans. Signal Process. 58(9), 4925–4935 (2010)

    Article  MathSciNet  Google Scholar 

Download references


The work is sponsored by the National Natural Science Foundation of China (61201276, 61178068 and 61301266), Fundamental Research Funds of Central Universities (ZYGX2012Z001), and Program for New Century Excellent Talents in University (A1098524023901001063).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Lingjiang Kong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, S., Kong, L. & Yang, J. Adaptive Clutter Nulling Approach for Heterogeneous Environments. Circuits Syst Signal Process 34, 987–1000 (2015).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: