Skip to main content
Log in

Decomposition-Based Recursive Least Squares Algorithm for Wiener Nonlinear Feedback FIR-MA Systems Using the Filtering Theory

  • Short Paper
  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

A decomposition-based recursive least squares algorithm is developed for Wiener nonlinear systems described by finite impulse response moving average models. After transferring a finite impulse response moving average (FIR-MA) model to a controlled autoregressive model, we compute the parameters by combining the decomposition principle and the least squares method and using the filtering idea. The simulation results validate the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. M.S. Ahmad, O. Kukrer, A. Hocanin, Recursive inverse adaptive filtering algorithm. Digit. Signal Process. 21(4), 491–496 (2011)

    Article  Google Scholar 

  2. S.I. Aihara, A. Bagchi, Recursive parameter identification for infinite-dimensional factor model by using particle filter-application to US-Treasury Bonds. Int. J. Innovative Comput. Inf. Control 4(1), 35–52 (2008)

    Google Scholar 

  3. M. Dehghan, M. Hajarian, SSHI methods for solving general linear matrix equations. Eng. Comput. 28(8), 1028–1043 (2011)

    Article  Google Scholar 

  4. M. Dehghan, M. Hajarian, Iterative algorithms for the generalized centro-symmetric and central anti-symmetric solutions of general coupled matrix equations. Eng. Comput. 29(5), 528–560 (2012)

    Article  Google Scholar 

  5. M. Dehghan, M. Hajarian, Fourth-order variants of Newton’s method without second derivatives for solving non-linear equations. Eng. Comput. 29(4), 356–365 (2012)

    Article  Google Scholar 

  6. F. Ding, K.P. Deng, X.M. Liu, Decomposition based Newton iterative identification method for a Hammerstein nonlinear FIR system with ARMA noise. Circuits Syst. Signal Process. doi: 10.1007/s00034-014-9772-y.

  7. J. Ding, J.X. Lin, Modified subspace identification for periodically non-uniformly sampled systems by using the lifting technique. Circuits Syst. Signal Process. doi:10.1007/s00034-013-9704-2.

  8. F. Ding, T. Chen, Gradient based iterative algorithms for solving a class of matrix equations. IEEE Trans. Autom. Control 50(8), 1216–1221 (2005)

    Article  MathSciNet  Google Scholar 

  9. F. Ding, T. Chen, Performance analysis of multi-innovation gradient type identification methods. Automatica 43(1), 1–14 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. F. Ding, X.P. Liu, G. Liu, Auxiliary model based multi-innovation extended stochastic gradient parameter estimation with colored measurement noises. Signal Process. 89(10), 1883–1890 (2009)

    Article  MATH  Google Scholar 

  11. F. Ding, X.P. Liu, G. Liu, Multi-innovation least squares identification for linear and pseudo-linear regression models. IEEE Trans. Syst. Man Cybern. Part B 40(3), 767–778 (2010)

    Article  Google Scholar 

  12. F. Ding, Several multi-innovation identification methods. Digit. Signal Process. 20(4), 1027–1039 (2010)

    Article  Google Scholar 

  13. J. Ding, C.X. Fan, J.X. Lin, Auxiliary model based parameter estimation for dual-rate output error systems with colored noise. Appl. Math. Model. 37(6), 4051–4058 (2013)

    Article  MathSciNet  Google Scholar 

  14. F. Ding, X.M. Liu, H.B. Chen, G.Y. Yao, Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems. Signal Process. 97(4), 31–39 (2014)

    Article  Google Scholar 

  15. F. Ding, Combined state and least squares parameter estimation algorithms for dynamic systems. Appl. Math. Model. 38(1), 403–412 (2014)

    Article  MathSciNet  Google Scholar 

  16. J.L. Figueroa, S.I. Biagiola, O.E. Agamennoni, An approach for identification of uncertain Wiener systems. Math. Comput. Model. 48(1–2), 305–315 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. A. Hagenblad, L. Ljung, A. Wills, Maximum likelihood identification of Wiener models. Automatica 44(11), 2697–2705 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. P.P. Hu, F. Ding, Multistage least squares based iterative estimation for feedback nonlinear systems with moving average noises using the hierarchical identification principle. Nonlinear Dyn. 73(1–2), 583–592 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  19. P.P. Hu, F. Ding, J. Sheng, Auxiliary model based least squares parameter estimation algorithm for feedback nonlinear systems using the hierarchical identification principle. J. Franklin Inst. 350(10), 3248–3259 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. J.H. Li, Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration. Appl. Math. Lett. 26(1), 91–96 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Y.J. Liu, Y.S. Xiao, X.L. Zhao, Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model. Appl. Math. Comput. 215(4), 1477–1483 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Y.J. Liu, L. Yu, F. Ding, Multi-innovation extended stochastic gradient algorithm and its performance analysis. Circuits Syst. Signal Process. 29(4), 649–667 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Y.J. Liu, F. Ding, Y. Shi, An efficient hierarchical identification method for general dual-rate sampled-data systems. Automatica 50(3), 962–973 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. J.X. Ma, F. Ding, Recursive relations of the cost functions for the least squares algorithms for multivariable systems. Circuits Syst. Signal Process. 32(1), 83–101 (2013)

    Article  MathSciNet  Google Scholar 

  25. B.Q. Mu, H.F. Chen, Recursive identification of errors-in-variables Wiener systems. Automatica 49(9), 2744–2753 (2013)

    Article  MathSciNet  Google Scholar 

  26. G.B. Qian, L.P. Li, M.G. Luo, On the blind channel identifiability of MIMO-STBC systems using noncircular complex FastICA algorithm. Circuits Syst. Signal Process. doi:10.1007/s00034-013-9722-0.

  27. M. Schoukens, R. Pintelon, Y. Rolain, Identification of Wiener–Hammerstein systems by a nonparametric separation of the best linear approximation. Automatica 50(2), 628634 (2014)

    Article  MathSciNet  Google Scholar 

  28. Y. Shi, F. Ding, T. Chen, 2-Norm based recursive design of transmultiplexers with designable filter length. Circuits Syst. Signal Process. 25(4), 447–462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  29. Z.Y. Wang, Z.C. Ji, Data filtering based iterative identification methods for nonlinear FIR-MA systems. J. Vib. Control (2013). doi:10.1177/1077546313484048

  30. D.Q. Wang, Recursive extended least squares identification method based on auxiliary models. IET Control Theory Appl. 26(1), 51–56 (2009)

    Article  MATH  Google Scholar 

  31. D.Q. Wang, F. Ding, Performance analysis of the auxiliary models based multi-innovation stochastic gradient estimation algorithm for output error systems. Digit. Signal Process. 20(3), 750–762 (2010)

    Article  Google Scholar 

  32. D.Q. Wang, Least squares-based recursive and iterative estimation for output error moving average systems using data filtering. IET Control Theory Appl. 5(14), 1648–1657 (2011)

    Article  MathSciNet  Google Scholar 

  33. D.Q. Wang, F. Ding, Hierarchical least squares estimation algorithm for Hammerstein–Wiener systems. IEEE Signal Process. Lett. 19(12), 825–828 (2012)

    Article  Google Scholar 

  34. D.Q. Wang, F. Ding, Y.Y. Chu, Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle. Inf. Sci. 222(10), 203–212 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. F. Yu, Z.Z. Mao, M.X. Jia, Recursive identification for Hammerstein–Wiener systems with dead-zone input nonlinearity. J. Process Control 23(8), 1108–1115 (2013)

    Article  Google Scholar 

  36. H. Zhang, Y. Shi, A.S. Mehr, Robust FIR equalization for time-varying communication channels with intermittent observations via an LMI approach. Signal Process. 91(7), 1651–1658 (2011)

    Article  MATH  Google Scholar 

  37. H. Zhang, Y. Shi, A.S. Mehr, Robust equalisation for inter symbol interference communication channels. IET Signal Process. 6(2), 73–78 (2012)

    Article  MathSciNet  Google Scholar 

  38. H. Zhang, Y. Shi, On energy-to-peak filtering for nonuniformly sampled nonlinear systems: a Markovian jump system approach. IEEE Trans. Fuzzy Syst. 22(1), 212–222 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China (Nos. 61174032, 61202473), the Doctoral Foundation of Higher Education Priority Fields of Scientific Research (No. 20110093130001), the Scientific Research Foundation of Jiangnan University (No. 1252050205135110), and by the PAPD of Jiangsu Higher Education Institutions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Wang, Y. & Ji, Z. Decomposition-Based Recursive Least Squares Algorithm for Wiener Nonlinear Feedback FIR-MA Systems Using the Filtering Theory. Circuits Syst Signal Process 33, 3649–3662 (2014). https://doi.org/10.1007/s00034-014-9806-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9806-5

Keywords

Navigation