Skip to main content

Detection of Channel Variations to Improve Channel Estimation Methods


In current digital communication systems, channel information is typically acquired by supervised approaches that use pilot symbols included in the transmit frames. Given that pilot symbols do not convey user data, they penalize throughput spectral efficiency, and transmit energy consumption of the system. Unsupervised channel estimation algorithms could be used to mitigate the aforementioned drawbacks although they present higher computational complexity than that offered by supervised ones. This paper proposes a simple decision method suitable for slowly varying channels to determine whether the channel has suffered a significant variation, which requires to estimate the matrix of the recently changed channel. Otherwise, a previous estimate is used to recover the transmitted symbols. The main advantage of this method is that the decision criterion is only based on information acquired during the time frame synchronization, which is carried out at the receiver. We show that the proposed criterion provides a considerable improvement of computational complexity for both supervised and unsupervised methods, without incurring in a penalization in terms of symbol error ratio. Specifically, we consider systems that make use of the popular Alamouti code. Performance evaluation is accomplished by means of simulated channels as well as making use of indoor wireless channels measured using a testbed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13


  1. Actually, current wireless communication standards define other parts of the frames for control data which are not considered in this work.

  2. The preamble length is a design parameter influenced mainly by the synchronization requirements. However, when implementing the proposed method to detect channel variations, one can decide to use the full preamble or just a portion of it.


  1. S.M. Alamouti, A simple transmit diversity technique for wireless communications. IEEE J. Sel. Areas Commun. 16, 1451–1458 (1998)

    Article  Google Scholar 

  2. E. Beres, R. Adve, Blind channel estimation for orthogonal STBC in MISO systems, in Proceedings of Global Telecommunications Conference (GLOBECOM 2004), vol. 4 (2004), pp. 2323–2328

  3. J.F. Cardoso, A. Souloumiac, Blind beamforming for non-Gaussian signals. IEEE Proc. F 140(6), 362–370 (1993)

    Google Scholar 

  4. P.M. Castro, J.A. Garcia-Naya, A. Dapena, D. Iglesia, Channel estimation techniques for linear precoded systems: supervised, unsupervised and hybrid approaches. Signal Process. 91(7), 1578–1588 (2011). doi:10.1016/j.sigpro.2011.01.001

    Article  MATH  Google Scholar 

  5. P. Comon, C. Jutten, Handbook of Blind Source Separation: Independent Component Analysis and Applications (Academic Press, London, 2010)

    Google Scholar 

  6. A. Dapena, P.M. Castro, J.A. Garcia-Naya, Hybrid supervised-unsupervised channel estimation scheme with dynamic transmission of pilots. Neural Process. Lett. 33(1), 1–15 (2011). doi:10.1007/s11063-010-9161-x

    Article  Google Scholar 

  7. A. Dapena, H. Pérez-Iglesias, V. Zarzoso, Blind channel estimation based on maximizing the eigenvalue spread of cumulant matrices in (2 \(\times \) 1) Alamouti’s coding schemes. Wirel. Commun. Mobile Comput. (2010). doi:10.1002/wcm.992

  8. T.M. Fernández-Caramés, J.A. García-Naya, M. González-Lopez, L. Castedo, MIMO testbed middleware for transmission automation, in Proceedings of 50th International Symposium ELMAR, vol. 1 (Zadar, Croatia, 2008), pp. 215–218

  9. J.A. Garcia-Naya, O. Fresnedo, F.J. Vazquez-Araujo, M. Gonzalez-Lopez, L. Castedo, J. Garcia-Frias, Experimental evaluation of analog joint source-channel coding in indoor environments, in Proceedings of IEEE International Conference on Communications (ICC 2011) (Kyoto, Japan, 2011)

  10. J.A. García-Naya, M. González-López, L. Castedo, Radio communications, chap. A. Distributed Multilayer Software Architecture for MIMO Testbeds. INTECH (2010)

  11. J.A. García-Naya, H.J. Perez-Iglesias, T.M. Fernández-Caramés, M. González-López, L. Castedo, A distributed multilayer architecture enabling end-user access to MIMO testbeds, in Proceedings of IEEE 19th International Symposium on Personal, Indoor and Mobile Radio Communications (Cannes, France, 2008), pp. 1–5. doi:10.1109/PIMRC.2008.4699692

  12. O. González, D. Ramírez, I. Santamaría, J.A. García-Naya, L. Castedo, Experimental validation of interference alignment techniques using a multiuser mimo testbed, in Proceedings of International ITG Workshop on Smart Antennas (WSA 2011) (Aachen, Germany, 2011)

  13. IEEE: IEEE standard for information technology- telecommunications and information exchange between systems—local and metropolitan area networks—specific requirements. part 11: Wireless LAN medium access control (MAC) and physical layer (PHY) specifications. Amendment 5: Enhancements for higher throughput (2009).

  14. IEEE: IEEE standard for local and metropolitan area networks; part 16: Air interface for broadband wireless access systems, IEEE Std. 802.16-2009 (2009).

  15. D. Love, R. Heath, V. Lau, D. Gesbert, B. Rao, M. Andrews, An overview of limited feedback in wireless communication systems. IEEE J. Sel. Areas Commun. 26(8), 1341–1365 (2008)

    Article  Google Scholar 

  16. H. Minn, V. Bhargava, K. Letaief, A robust timing and frequency synchronization for OFDM systems. IEEE Trans. Wirel. Commun. 2(4), 822–839 (2003)

    Article  Google Scholar 

  17. M. Morelli, C.C. Kuo, M.O. Pun, Synchronization techniques for orthogonal frequency division multiple access (OFDMA): a tutorial review. Proc. IEEE 95(7), 1394–1427 (2007). doi:10.1109/JPROC.2007.897979

    Article  Google Scholar 

  18. H.J. Perez-Iglesias, J.A. Garcia-Naya, A. Dapena, L. Castedo, V. Zarzoso, Blind channel identification in Alamouti coded systems: a comparative study of eigendecomposition methods in indoor transmissions at 2.4 GHz. Eur. Trans. Telecommun. Special Issue Eur. Wirel. 19(7), 751–759 (2008). doi:10.1002/ett.1321

    Article  Google Scholar 

  19. S. Shahbazpanahi, A.B. Gershman, J. Manton, Closed-form blind MIMO channel estimation for orthogonal space–time block codes. IEEE Trans. Signal Process. 53(12), 4506–4516 (2005)

    Article  MathSciNet  Google Scholar 

  20. G.L. Stuber, J.R. Barry, S.W. Mclaughlin, Y.G. Li, M.A. Ingram, T.G. Pratt, Broadband MIMO–OFDM wireless communications. Proc. IEEE 92(2), 271–294 (2004)

    Article  Google Scholar 

  21. V. Tarokh, H. Jafarkhani, A.R. Calderbank, Space–time block codes from orthogonal designs. IEEE Trans. Inf. Theory 45(5), 1456–1467 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. J. Vía, I. Santamaría, On the blind identifiability of orthogonal space-time block codes from second order statistics. IEEE Trans. Inf. Theory 54(2), 709–722 (2008). doi:10.1109/TIT.2007.913561

    Article  Google Scholar 

Download references


This work has been funded by Xunta de Galicia, Ministerio de Ciencia e Innovación of Spain, and FEDER funds of the European Union under Grants with Nos. 2012/287, TEC2010-19545-C04-01, and CSD2008-00010.

Author information

Authors and Affiliations


Corresponding author

Correspondence to José A. García-Naya.



In this appendix we will derive the maximum log-likelihood expression for channel coefficients used in the paper to estimate such channel coefficients from pilot sequences.

Under the assumptions A1–A3, the expected log-likelihood of the observations is given, up to an irrelevant constant factor, by:

$$\begin{aligned} L(\mathbf{h}) = -\frac{1}{2\sigma _n^2N}\sum _{k=0}^{N-1} \Vert \mathbf{x}_k - \mathbf{S}_k\mathbf{h}\Vert ^2, \end{aligned}$$

where \(N\) is the number of samples of the observed signal. The gradient of Eq. (12) with respect to the unknown vector \(\mathbf{h}\) yields the score function:

$$\begin{aligned} \nabla L(\mathbf{h}) = \frac{1}{\sigma _n^2N}\sum _{k=0}^{N-1} \mathbf{S}_k^\mathrm {H}(\mathbf{x}_k - \mathbf{S}_k\mathbf{h}). \end{aligned}$$

Setting the score to zero leads to the ML estimate:

$$\begin{aligned} \hat{ \mathbf{h}}_\mathrm {ML}= \frac{1}{2N\hat{\sigma }_s^2} \sum _{k=0}^{N-1}\mathbf{S}^\mathrm {H}_k\mathbf{x}_k, \end{aligned}$$

where \(\hat{\sigma }_s^2= \frac{1}{2N}\sum _{t=0}^{2N-1} |s(t)|^2\) is a sample estimate of the source variance \(\sigma _s^2\). To derive the expression of Eq. (14), we have exploited the orthogonality of the source symbol matrix \(\mathbf{S}_k\) given by Eq. (3), which means in particular that

$$\begin{aligned} \sum _{k=0}^{N-1}\mathbf{S}_k^\mathrm {H}\mathbf{S}_k = \sum _{k=0}^{N-1} \bigl ( |s_1(k)|^2 + |s_2(k)|^2 \bigr )\mathbf{I}_2 = \left( \sum _{t=0}^{2N-1} |s(t)|^2\right) \mathbf{I}_2 = 2N\hat{\sigma }_s^2\mathbf{I}_2, \end{aligned}$$

where \(\mathbf{I}_2\) is the (\(2\times 2\)) identity matrix. According to Eq. (14), the ML estimates of the channel coefficients can be expressed as follows:

$$\begin{aligned} \hat{h}_{1,\mathrm {ML}}&= \frac{1}{2N\hat{\sigma }_s^2}\sum _{k=0}^{N-1} \left( s_1(k)^*x_1(k) - s_ 2(k)x_ 2(k)\right) \nonumber \\ \hat{h}_{2,\mathrm {ML}}&= \frac{1}{2N\hat{\sigma }_s^2}\sum _{k=0}^{N-1} \left( s_ 2(k)^*x_1(k) + s_1(k)x_2(k)\right) . \end{aligned}$$

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Dapena, A., García-Naya, J.A., Castro, P.M. et al. Detection of Channel Variations to Improve Channel Estimation Methods. Circuits Syst Signal Process 33, 2605–2623 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: