Skip to main content
Log in

Robust and Efficient OFDM Synchronization for FPGA-Based Radios

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Orthogonal frequency division multiplexing (OFDM) is a popular modulation technique that can combat impulsive noise, is robust to multipath fading, is spectrally efficient, and can allow flexible allocation of spectrum. It has become a key standard in cognitive radio systems as well as an enabling technology for mobile data access systems. An OFDM receiver’s performance is heavily impacted by the accuracy of its symbol timing offset (STO) and carrier frequency offset (CFO) estimation. This paper proposes a novel OFDM synchronization method that combines robust performance with computational efficiency. FPGA prototyping is used to explore the trade-off between the number of computations to be performed and computation word length with respect to both synchronization performance and power consumption. Through simulation, the proposed method is shown to provide accurate fractional CFO estimation as well as STO estimation in a range of channels. In particular, it can yield excellent synchronization performance in the face of a CFO that is larger than many state-of-the-art synchronization implementations can handle. The system implementation demonstrates efficient resource usage and reduced power consumption compared with existing methods, and this is explored as a fine-grained trade-off between performance and power consumption. The result is a robust method suitable for use in low-power radios, enabling less precise analog front ends to be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. B. Ai, Z.X. Yang, C.Y. Pan, J.H. Ge, Y. Wang, Z. Lu, On the synchronization techniques for wireless OFDM systems. IEEE Trans. Broadcasting 52, 236–244 (2006)

    Article  Google Scholar 

  2. K. Bang, N. Cho, J. Cho, H. Jun, K. Kim, H. Park, D. Hong, A coarse frequency offset estimation in an OFDM system using the concept of the coherence phase bandwidth. IEEE Trans. Commun. 49(8), 1320–1324 (2001). doi:10.1109/26.939841

    Article  MATH  Google Scholar 

  3. J. Dowle, S.H. Kuo, K. Mehrotra, I.V. McLoughlin, FPGA-based MIMO and space-time processing platform. EURASIP J. Appl. Signal Process. Special issue on MIMO implementation 34653, 1–14 (2006)

    Google Scholar 

  4. V. Erceg, K.V.S. Hari, M.S. Smith, D.S. Baum, Channel models for fixed wireless applications. Technical Report. IEEE802.16a-03/01 (2003)

  5. J. Guffey, A. Wyglinski, G. Minden, Agile radio implementation of OFDM physical layer for dynamic spectrum access research. In IEEE Global Telecommunications Conference (GLOBECOM), pp. 4051–4055 (2007). doi:10.1109/GLOCOM.2007.770

  6. L. Hanzo, T. Keller, OFDM and MC-CDMA : A Primer. Wiley-IEEE Press (New York, 2006)

  7. Z. Huang, B. Li, M. Liu, A proposed timing synchronization method for 802.16e downlink. In International Symposium on Intelligent Signal Processing and Communication Systems (ISPACS), pp. 1–4 (2010). doi:10.1109/ISPACS.2010.5704625

  8. IEEE std.802.16-2009: IEEE Standard for Local and Metropolitan Area Networks Part16: Air Interface for Fixed Broadband Wireless Access Systems

  9. T.H Kim, I.C. Park, Low-power and high-accurate synchronization for IEEE 802.16d systems. IEEE Trans. Very Large Scale Integration (VLSI) Syst. 16(12), 1620–1630 (2008). doi:10.1109/TVLSI.2008.2001567

    Google Scholar 

  10. C.N. Kishore, V.U. Reddy, A frame synchronization and frequency offset estimation algorithm for OFDM system and its analysis. EURASIP J. Wirel. Commun. Netw. 2006, 1–16 (2006)

    Google Scholar 

  11. L. Liu, T. Cheng, Q. Xiaoyu, Q. Jiahui, Research on implementation of OFDM burst acket transmission on software radio platform of FPGA. In 11th International Conference on Advanced Communication Technology (ICACT), pp. 646–650 (2009)

  12. J. Lotze, S.A. Fahmy, J. Noguera, B. Ozgül, L. Doyle, R. Esser, Development framework for implementing fpga-based cognitive network nodes. In Proceedings of the IEEE Global Communications Conference (GLOBECOM) (2009)

  13. F. Manavi, Y. Shayan, Implementation of OFDM modem for the physical layer of IEEE 802.11a standard based on Xilinx Virtex-II FPGA. In Vehicular Technology Conference, VTC 2004-Spring. IEEE 59th, vol. 3 (2004), pp. 1768–1772. doi:10.1109/VETECS.2004.1390560

  14. McLoughlin, I.V.: Computer Architecture: An Embedded Approach. McGraw-Hill, New York City (2011)

  15. J. Park, T. Ogunfunmi, Efficient FPGA-based implementations of MIMO-OFDM physical layer. Circuits Syst. Signal Process. 31(4), 1487–1511 (2012). doi:10.1007/s00034-012-9411-4

  16. T.H. Pham, S.A. Fahmy, I.V. McLoughlin, Low-power correlation for IEEE 802.16 OFDM synchronisation on FPGA. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21(8), 1549–1553 (2013)

    Google Scholar 

  17. A. Recio, P. Athanas, Physical layer for spectrum-aware reconfigurable OFDM on an FPGA. In 13th Euromicro Conference on Digital System Design: Architectures, Methods and Tools (DSD) (2010), pp. 321–327. doi:10.1109/DSD.2010.110

  18. T. Schmidl, D. Cox, Robust frequency and timing synchronization for OFDM. IEEE Trans. Commun. 45(12), 1613–1621 (1997). doi:10.1109/26.650240

    Article  Google Scholar 

  19. L. Schwoerer, VLSI suitable synchronization algorithms and architecture for IEEE 802.11a physical layer. In IEEE International Symposium on Circuits and Systems (ISCAS), vol. 5 (2002), pp. V721–V724. doi:10.1109/ISCAS.2002.1010805

  20. P.D. Sutton, J. Lotze, H. Lahlou, S.A. Fahmy, K. Nolan, B. Özgül, T.W. Rondeau, J. Noguera, L. Doyle, Iris: an architecture for cognitive radio networking testbeds. IEEE Commun. Mag. 48(9), 114–122 (2010)

    Article  Google Scholar 

  21. K. Wang, J. Singh, M. Faulkner, FPGA implementation of an OFDM-WLAN synchronizer. In Second IEEE International Workshop on Electronic Design, Test and Applications (DELTA) (2004), pp. 89–94. doi:10.1109/DELTA.2004.10039

  22. K.W. Yip, Y.C. Wu, T.S. Ng, Design of multiplierless correlators for timing synchronization in IEEE 802.11a wireless LANs. IEEE Trans. Consum. Electron. 49(1), 107–114 (2003). doi:10.1109/TCE.2003.1205462

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian V. McLoughlin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, T.H., McLoughlin, I.V. & Fahmy, S.A. Robust and Efficient OFDM Synchronization for FPGA-Based Radios. Circuits Syst Signal Process 33, 2475–2493 (2014). https://doi.org/10.1007/s00034-014-9747-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-014-9747-z

Keywords

Navigation