Edge Effect Elimination in Single-Mixture Blind Source Separation

Abstract

Blind source separation (BSS) of single-channel mixed recording is a challenging task that has applications in the fields of speech, audio and bio-signal processing. Ensemble empirical mode decomposition (EEMD)-based methods are commonly used for blind separation of single input multiple outputs. However, all of these EEMD-based methods appear in the edge effect problem when cubic spline interpolation is used to fit the upper and lower envelopes of the given signals. It is therefore imperative to have good methods to explore a more suitable design choice, which can avoid the problems mentioned above as much as possible. In this paper we present a novel single-mixture blind source separation method based on edge effect elimination of EEMD, principal component analysis (PCA) and independent component analysis (ICA). EEMD represents any time-domain signal as the sum of a finite set of oscillatory components called intrinsic mode functions (IMFs). In extreme point symmetry extension (EPSE), optimum values of endpoints are obtained by minimizing the deviation evaluation function of signal and signal envelope. Edge effect is turned away from signal by abandoning both ends’ extension parts of IMFs. PCA is applied to reduce dimensions of IMFs. ICA finds the independent components by maximizing the statistical independence of the dimensionality reduction of IMFs. The separated performance of edge EPSE-EEMD-PCA-ICA algorithm is compared with EEMD-ICA and EEMD-PCA-ICA algorithms through simulations, and experimental results show that the former algorithm outperforms the two latter algorithms with higher correlation coefficient and lower relative root mean square error (RRMSE).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

References

  1. 1.

    H.I. Ashiba, K.H. Awadalla, S.M. El-Halfawy, F.E. Abd El-Samie, Adaptive least squares interpolation of infrared images. Circuits Syst. Signal Process. 30(3), 543–551 (2011)

    MathSciNet  MATH  Article  Google Scholar 

  2. 2.

    F.R. Bach, M.I. Jordan, Blind one-microphone speech separation: a spectral learning approach. Adv. Neural Inf. Process. Syst. 16, 65–72 (2004)

    Google Scholar 

  3. 3.

    B.L. Barnhart, W.E. Eichinger, Analysis of sunspot variability using the Hilbert–Huang transform. Sol. Phys. 269(2), 439–449 (2011)

    Article  Google Scholar 

  4. 4.

    A. Dapena, D. Iglesia, C.J. Escudero, An MSE-based method to avoid permutation/gain indeterminacy in frequency-domain blind source separation. Circuits Syst. Signal Process. 29(3), 403–417 (2010)

    MATH  Article  Google Scholar 

  5. 5.

    M.E. Davies, C.J. James, Source separation using single channel ICA. Signal Process. 87, 1819–1832 (2007)

    MATH  Article  Google Scholar 

  6. 6.

    W. Deng, F. Zhang, L. Zheng, Removal function model and experiment of edge effect. Infrared Laser Eng. 40(9), 1743–1748 (2011)

    Google Scholar 

  7. 7.

    B. Gao, W.L. Woo, S.S. Dlay, Single-channel source separation using EMD-subband variable regularized sparse features. IEEE Trans. Audio Speech Lang. Process. 19(4), 961–976 (2011)

    Article  Google Scholar 

  8. 8.

    Y. Guo, Y. Li, Single channel electromyography blind recognition system of 3D hand. Comput. Appl. Softw. 27(9), 234–236 (2010)

    Google Scholar 

  9. 9.

    Y. Guo, D. Zhou, Single channel surface electromyography blind recognition model based on watermarking. J. Vib. Control 18(1), 42–47 (2011)

    MathSciNet  Google Scholar 

  10. 10.

    Y. Guo, S. Huang, Y. Li, Single-mixture source separation using dimensionality reduction of ensemble empirical mode decomposition and independent component analysis. Circuits Syst. Signal Process. 31(6), 2047–2060 (2012)

    MathSciNet  Article  Google Scholar 

  11. 11.

    M.E. Hamid, K. Ogawa, T. Fukabayashi, Improved single-channel noise reduction method of speech by blind source separation. Acoust. Sci. Technol. 28(3), 153–164 (2007)

    Article  Google Scholar 

  12. 12.

    H. Hu, Y.F. Dai, X.Q. Peng, J. Wang, Research on reducing the edge effect in magnetorheological finishing. Appl. Opt. 50(9), 1220–1226 (2011)

    Article  Google Scholar 

  13. 13.

    N.E. Huang, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time-series analysis. Proc. R. Soc., Math. Phys. Eng. Sci. 454(197), 903–995 (1998)

    MATH  Article  Google Scholar 

  14. 14.

    N.E. Huang, M.L. Wu, S.R. Long, S.S. Shen, W.D. Qu, P. Gloersen, K.L. Fan, The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. 454A, 903–993 (1971)

    Google Scholar 

  15. 15.

    A. Hyvärinen, E. Oja, Independent component analysis: algorithms and application. Neural Netw. 13(4–5), 411–430 (2000)

    Article  Google Scholar 

  16. 16.

    A. Hyvärinen, J. Karhunen, E. Oja, Independent Component Analysis (Wiley, New York, 2001). ISBN 978-0-471-40540-5

    Google Scholar 

  17. 17.

    I.M.S. Panahi, K. Venkat, Blind identification of multi-channel systems with single input and unknown orders. Signal Process. 89, 1288–1310 (2009)

    MATH  Article  Google Scholar 

  18. 18.

    I.T. Jolliffe, Principal Component Analysis, 2nd edn. Series: Springer Series in Statistics (Springer, New York, 2002). ISBN 978-0-387-95442-4

    Google Scholar 

  19. 19.

    T. Kristjansson, J. Hershey, P. Olsen, S. Rennie, R. Gopinath, Super-human multi-talker speech recognition: the IBM2006 speech separation challenge system, in Proceedings of the International Conference on Spoken Language Processing (INTERSPEECH), Pittsburgh, Pennsylvania (2006), pp. 97–100

    Google Scholar 

  20. 20.

    J. Lin, A. Zhang, Fault feature separation using wavelet-ICA filter. NDT E Int. 38(6), 421–427 (2005)

    Article  Google Scholar 

  21. 21.

    J. Liu, J. Zhou, H. Luo, X. Kong, Y. En, Q. Shi, Y. He, Total-dose-induced edge effect in SOI NMOS transistors with different layouts. Microelectron. Reliab. 50(1), 45–47 (2010)

    Article  Google Scholar 

  22. 22.

    H.-G. Ma, Q.-B. Jiang, Z.-Q. Liu, G. Liu, Z.-Y. Ma, A novel blind source separation method for single-channel signal. Signal Process. 90(12), 3232–3241 (2010)

    MATH  Article  Google Scholar 

  23. 23.

    B. Mijovic, M.D. Vos, I. Gligorijevic, J. Taelman, S.V. Huffel, Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Trans. Biomed. Eng. 57(9), 2188–2196 (2010)

    Article  Google Scholar 

  24. 24.

    W.B.A.B. Mikhael, R.A. Ranganathan, T.B. Yang, Complex adaptive ICA employing the conjugate gradient technique for signal separation in time-varying flat fading channels. Circuits Syst. Signal Process. 29(3), 469–480 (2010)

    MathSciNet  MATH  Article  Google Scholar 

  25. 25.

    G.R. Naik, D.K. Kumar, M. Palaniswami, Multi-run ICA and surface EMG based signal processing system for recognising hand gestures. IEEE Comput. Inf. Technol. 2008, 700–705 (2008)

    Google Scholar 

  26. 26.

    K. Pearson, On lines and planes of closest fit to systems of points in space. Philos. Mag. 2(6), 559–572 (1901)

    Google Scholar 

  27. 27.

    S.T. Roweis, One microphone source separation. Adv. Neural Inf. Process. Syst., 793–799 (2000)

  28. 28.

    J. Seo, X. Liu, D. Kim, K. Sohn, An objective video quality metric for compressed stereoscopic video. Circuits Syst. Signal Process. 31(3), 1089–1107 (2012)

    Article  Google Scholar 

  29. 29.

    Z. Shu, Z. Yang, A better method for effectively suppressing end effect of empirical mode decomposition (EMD). J. Northwestern Polytech. Univ. 24(5), 639–642 (2006)

    Google Scholar 

  30. 30.

    G. Tzagkarakis, M. Papadopouli, P. Tsakalides, Singular spectrum analysis of traffic workload in a large-scale wireless LAN, in CDROM of Proceedings MSWIM’07, Chania, Crete Island, Greece, 22–26 October 2007, pp. 22–26

    Google Scholar 

  31. 31.

    R.M. Udrea, D.N. Vizireanu, S. Ciochina, An improved spectral subtraction method for speech enhancement using a perceptual weighting filter. Digit. Signal Process. 18, 581–587 (2008)

    Article  Google Scholar 

  32. 32.

    R.M. Udrea, D.N. Vizireanu, S. Ciochina, S. Halunga, Nonlinear spectral subtraction method for colored noise reduction using multi-band Bark scale. Signal Process. 88(5), 1299–1303 (2008)

    MATH  Article  Google Scholar 

  33. 33.

    A. Vega, N. Osawa, S. Rashed, H. Murakawa, Analysis and prediction of edge effect on inherent deformation of thick plates formed by line heating. Comput. Model. Eng. Sci. 69(3), 261–279 (2010)

    MATH  Google Scholar 

  34. 34.

    K. Wakabayashi, S. Dutta, Nanoscale and edge effect on electronic properties of grapheme. Solid State Commun. 152(15), 1420–1430 (2012)

    Article  Google Scholar 

  35. 35.

    T. Wang, H.B. Cheng, Y.P. Feng, Z.C. Dong, Simulation analysis of edge effect in typical optical processing. Trans. Beijing Inst. Technol. 31(9), 1100–1103+1126 (2011)

    Google Scholar 

  36. 36.

    W.F. Wu, X.H. Chen, X.J. Su, Blind source separation of single-channel mechanical signal based on empirical mode decomposition. J. Mech. Eng. 47(4), 213–216 (2011)

    Google Scholar 

  37. 37.

    Z. Xie, J. Feng, Codebook design for vector quantization based on a kernel fuzzy learning algorithm. Circuits Syst. Signal Process. 30(5), 999–1010 (2011)

    Article  Google Scholar 

  38. 38.

    Y. Yuan, C.M. Li, T.Y. Wang, X. Zhao, Fault diagnosis and classification for bearing based on EMD-ICA, in International Conference of Electronic and Mechanical Engineering and Information Technology (EMEIT) (2011), pp. 2715–2718

    Google Scholar 

  39. 39.

    H. Zhang, L. Li, W. Li, Independent component analysis based on fast proximal gradient. Circuits Syst. Signal Process. 31(2), 583–593 (2012)

    MATH  Article  Google Scholar 

Download references

Acknowledgements

Funding for this work was supported by 2010 research project of Shanxi Scholarship Council of China [Nos. 92, 20101069], 2011 research project of Department of Human Resources and Social Security of Shanxi Province [No. 20121030], 2012 The ShanXi Science and Technology Department [No. 2012081036], 2012 graduate students’ innovative project of Department of Science and Technology of Taiyuan City [No. 120164034] and 2010 Youth Foundation of Taiyuan University of Science and Technology of China [No. 20103004].

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yina Guo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Guo, Y., Huang, S., Li, Y. et al. Edge Effect Elimination in Single-Mixture Blind Source Separation. Circuits Syst Signal Process 32, 2317–2334 (2013). https://doi.org/10.1007/s00034-013-9556-9

Download citation

Keywords

  • Blind source separation (BSS)
  • Independent component analysis (ICA)
  • Principal component analysis (PCA)
  • Ensemble empirical mode decomposition (EEMD)
  • Edge effect