Skip to main content
Log in

An Improved Direct Digital Synthesizer Using Hybrid Wave Pipelining and CORDIC algorithm for Software Defined Radio

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

The improved Direct Digital Synthesizer (DDS) using the Hybrid Wave Pipelining (HWP) technique and COordinate Rotation DIgital Computer (CORDIC) algorithm for Software Defined Radio (SDR) is presented in this paper. In order to achieve high throughput, the hybrid wave pipelining technique is adopted. The HWP can be used to speed up the circuits without insertion of storage elements. The CORDIC algorithm is used for phase-to-amplitude conversion and utilized for dynamic transformation rather than Read Only Memory (ROM) static addressing. The frequency resolution and phase resolution are achieved as 0.023 Hz and 0.088 degree, respectively, at the maximum operating frequency of 199.288 MHz for the proposed DDS architecture. The spectral purity of the proposed design has been improved to 114 dBc with a throughput of 94 %. This paper is focused on the design and implementation of DDS using hybrid wave pipelining with CORDIC approach to target on Xilinx Spartan 3 (XC3S400-5PQ208) Field Programmable Gate Array (FPGA) with a speed grade of −5. The proposed DDS design reduces the gate count from 49.4 % to 18.2 % as compared to the conventional pipelined Read Only Memory Look Up Table (ROMLUT) DDS method. The throughput of the proposed method has been improved from 78 % to 94 % and 55 % of total power reduction as compared with conventional DDS. The performance of the improved DDS architecture is compared with several existing DDS architectures and it is found that the present design is outperforming and can be used for software defined radios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. R. Andhraka, A survey of CORDIC algorithm for FPGA based computers, in Proc. of the 6th ACM/SIGDA Int. Symposium on Field Programmable Gate Arrays (1998), pp. 191–200

    Google Scholar 

  2. W.P. Burleson, M. Ciesielski, F. Klass, W. Liu, Wave-pipelining: a tutorial and research survey. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 6(3), 464–474 (1998)

    Article  Google Scholar 

  3. D.D. Caro, A.G.M. Strollo, High performance direct digital frequency synthesizers using piecewise polynomial approximation. IEEE Trans. Circuits Syst. I, Regul. Pap. 52(2), 324–337 (2005)

    Article  MathSciNet  Google Scholar 

  4. D.D. Caro, A.G.M. Strollo, High performance direct digital frequency synthesizers in 0.25 µm CMOS using dual-slope approximation. IEEE J. Solid-State Circuits 40(11), 2220–2227 (2005)

    Article  Google Scholar 

  5. L.S.J. Chimakurthy, M. Ghosh, F.F. Dai, R.C. Jaeger, A novel DDS using nonlinear ROM addressing with improved compression ratio and quantization noise. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(2), 274–283 (2006)

    Article  Google Scholar 

  6. X. Geng, F.F. Dai, J.D. Irwin, R.C. Jaeger, 24-bit 5.0 GHz direct digital synthesizer RFIC with direct digital modulations in 0.13 µm SiGe BiCMOS technology. IEEE J. Solid-State Circuits 45(5), 944–954 (2010)

    Article  Google Scholar 

  7. X. Geng, F.F. Dai, J.D. Irwin, R.C. Jaeger, An 11-bit 8.6 GHz direct digital synthesizer MMIC with 10-bit segmented sine-weighted DAC. IEEE J. Solid-State Circuits 45(2), 300–313 (2010)

    Article  Google Scholar 

  8. C.T. Gray, W. Liu, R.K. Cavin, Timing constraints for wave-pipelined systems. IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst. 13(8), 987–1004 (1994)

    Article  Google Scholar 

  9. M. Jridi, A. Alfalou, Direct digital frequency synthesizer with CORDIC algorithm and Taylor series approximation for digital receivers. Eur. J. Sci. Res. 30(4), 542–553 (2009)

    Google Scholar 

  10. C.Y. Kang, E.E. Swartzlander, Digit-pipelined direct digital frequency synthesis based on differential CORDIC. IEEE Trans. Circuits Syst. I, Regul. Pap. 53(5), 1035–1044 (2006)

    Article  Google Scholar 

  11. B. Lakshmi, A.S. Dhar, CORDIC architectures: a survey. I. VLSI Des. (2010). doi:10.1155/2010/794891

    MathSciNet  Google Scholar 

  12. S.I. Liu, T.B. Yu, H.W. Tsao, Pipeline direct digital frequency synthesizer using decomposition method, in Proc. of the IEEE Circuits Devices Syst (2001), pp. 141–144

    Google Scholar 

  13. A. Madisetti, A.Y. Kwentus, A.N. Willson, A 100-MHz, 16-b, direct digital frequency synthesizer with a 100-dBc spurious-free dynamic range. IEEE J. Solid-State Circuits 34(8), 1034–1043 (1999)

    Article  Google Scholar 

  14. A.L. McEwan, S. Collin, Efficient ROM-less DDFS using non-linear interpolation and non-linear DAC. Analog Integr. Circuits Signal Process. 48, 231–237 (2006)

    Article  Google Scholar 

  15. A.L. McEwan, S. Collins, Analogue interpolation based direct digital frequency synthesis, in Proc. of the IEEE Int. Symposium on Circuits and Syst (2003), pp. 621–624

    Google Scholar 

  16. T. Menakadevi, M. Madheswaran, Implementation of hybrid wave pipelined direct digital synthesizer for software defined radio. J. Eng. Appl. Sci. 6(11), 52–61 (2011)

    Google Scholar 

  17. D.E. Metafas, C.E. Goutis, A DSP processor with a powerful set of elementary arithmetic operations based on CORDIC and CCM algorithms. Microprocess. Microprogram. 30(5), 51–57 (1990)

    Article  Google Scholar 

  18. D.R. Moran, J.G. Menoyo, J.L. Martin, Digital frequency synthesizer based on two coprime moduli DDS. IEEE Trans. Circuits Syst. II, Express Briefs 53(12), 1388–1392 (2006)

    Article  Google Scholar 

  19. H.T. Nicholas, H. Samueli, An analysis of output spectrum of direct digital frequency synthesizer in the presence of phase accumulator truncation, in Proc. of the 41st. IEEE Annual Frequency Control Symposium (1991), pp. 495–502

    Google Scholar 

  20. J. Nyathi, J.G. Delgado-Frias, Hybrid wave-pipelined network router. IEEE Trans. Circuits Syst. I, Fundam. Theory Appl. 49(12), 1764–1772 (2002)

    Article  Google Scholar 

  21. K.K. Parhi, VLSI Signal Processing Systems (Wiley, New York, 1999)

    Google Scholar 

  22. G. Seetharaman, B. Venkataramani, G. Lakshminarayanan, VLSI implementation of hybrid wave-pipelined 2D DWT using lifting scheme. VLSI Des. (2008). doi:10.1155/2008/512746

    MATH  Google Scholar 

  23. A.M. Sodagar, G.R. Lahiji, A pipelined ROM-less architecture for sine-output direct digital frequency synthesizers using the second-order parabolic approximation. IEEE Trans. Circuits Syst. II, Express Briefs 48(9), 850–857 (2001)

    Article  Google Scholar 

  24. Y. Song, B. Kim, Quadrature direct digital frequency synthesizer using interpolation based angle rotation. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12(7), 701–710 (2004)

    Article  Google Scholar 

  25. G.M. Sreeramareddy, P. Chandrashekarareddy, Design and FPGA implementation of high speed, low power digital up converter for power line communication systems. Eur. J. Sci. Res. 25(2), 234–249 (2009)

    Google Scholar 

  26. A.G.M. Strollo, D.D. Caro, N. Petra, A 630 MHz, 76 mW direct digital frequency synthesizer using enhanced ROM compression technique. IEEE J. Solid-State Circuits 42(2), 350–360 (2007)

    Article  Google Scholar 

  27. Technical tutorial on digital signal synthesis, Analog Devices web (1999). http://www.analog.com/UploadedFiles/Tutorials/450968421DDS_Tutorial_rev12-2-99. Accessed on 12 December 2008

  28. P. Teehan, G.G.F. Lemieux, M.R. Greenstreet, Towards reliable 5 Gbps Wave-pipelined and 3 Gbps surfing interconnect in 65 nm FPGAs, in Proc. of the Int. Symposium on FPGA (2009), pp. 43–52

    Google Scholar 

  29. J. Tierney, C.M. Radre, B. Gold, A digital frequency synthesizer. IEEE Trans. Audio Electroacoust. 19(1), 48–57 (1971)

    Article  Google Scholar 

  30. D. Timmermann, H. Hahn, B.J. Hosticka Schmidt, A programmable CORDIC chip for digital signal processing applications. IEEE J. Solid-State Circuits 26(9), 1317–1321 (1991)

    Article  Google Scholar 

  31. S.E. Turner, D.E. Kotecki, Direct digital synthesizer with ROM-less architecture at 13-GHz clock frequency in InP DHBT technology. IEEE Microw. Wirel. Compon. Lett. 16(5), 296–298 (2006)

    Article  Google Scholar 

  32. S.E. Turner, D.E. Kotecki, ROM-based direct digital synthesizer architecture at 24-GHz clock frequency in InP DHBT technology. IEEE Microw. Wirel. Compon. Lett. 18(8), 566–568 (2008)

    Article  Google Scholar 

  33. J. Vankka, Direct Digital Synthesizers: Theory, Design and Applications (Kluwer Academic, London, 2001)

    Book  MATH  Google Scholar 

  34. J.E. Volder, The CORDIC trigonometric computing technique. IEEE Trans. Comput. 8(3), 330–334 (1959)

    Google Scholar 

  35. J.E. Volder, The birth of CORDIC. J. VLSI Signal Process. 25(2), 101–105 (2000)

    Article  Google Scholar 

  36. W. Wang, Z. Yifang, Y. Yang, Efficient wireless digital up converters design using system generator, in Proc. of the Int. Conference on Signal Process (2006), pp. 443–446

    Google Scholar 

  37. XILINX IP logic core DDS complier v4.0. Xilin web. http://www.xilinx.com/support/documentation/ip_documentation/dds_ds558.pdf (2009). Accessed on 16 March 2010

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Madheswaran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Madheswaran, M., Menakadevi, T. An Improved Direct Digital Synthesizer Using Hybrid Wave Pipelining and CORDIC algorithm for Software Defined Radio. Circuits Syst Signal Process 32, 1219–1238 (2013). https://doi.org/10.1007/s00034-012-9495-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-012-9495-x

Keywords

Navigation